Projects per year
Abstract
In the field of topology optimization, the homogenization approach has been revived as an important alternative to the established, density-based methods. Homogenization can represent microstructures at length scales decoupled from the resolution of the computational grid. The optimal microstructure for a single load case is an orthogonal rank-3 laminate. Initially, we investigate where singularities occur in orthogonal rank-3 laminates and show that the laminar parts of the structures we seek are unaffected by the singularities. Based on this observation, we propose a method for generating multi-laminar structures from frame fields that describe rank-3 laminates. Rather than establishing a parametrization of the domain, we compute stream surfaces that align with the frame fields and solve an optimization problem in order to find a well-spaced collection of such stream surfaces. Since our method does not rely on a parametrization, we also do not need a combing of the frame fields to generate this collection. Finally, we provide a method for synthesizing multi-laminar structures from a stream surface collection. This method produces a volumetric solid for each surface and combines these to form the output. We demonstrate our method on several frame fields produced by the homogenization approach to topology optimization.
| Original language | English |
|---|---|
| Article number | 170 |
| Journal | A C M Transactions on Graphics |
| Volume | 41 |
| Issue number | 5 |
| Number of pages | 20 |
| ISSN | 0730-0301 |
| DOIs | |
| Publication status | Published - 2022 |
Keywords
- Topology optimization
- Multi-laminar structures
- Frame-fields
- Stream surfaces
Fingerprint
Dive into the research topics of 'Synthesis of Frame Field-Aligned Multi-Laminar Structures'. Together they form a unique fingerprint.Projects
- 1 Finished
-
InnoTop: InnoTop, Interactive, Non-Linear, High-Resolution Topology Optimization
Sigmund, O. (Project Coordinator), Petersen, M. L. (Project Manager), Carlberg, L. K. (Project Manager), Aage, N. (Project Participant), Andreasen, C. S. (Project Participant), Wang, F. (Project Participant), Bærentzen, J. A. (Project Participant) & Assentoft, D. (Project Manager)
01/09/2017 → 31/08/2024
Project: Research