TY - JOUR
T1 - Synthesis of carbon quantum dot-poly lactic-co-glycolic acid hybrid nanoparticles for chemo-photothermal therapy against bacterial biofilms
AU - Huang, Zheng
AU - Zhou, Tongchang
AU - Yuan, Yuan
AU - Natalie Kłodzińska, Sylvia
AU - Zheng, Tao
AU - Sternberg, Claus
AU - Mørck Nielsen, Hanne
AU - Sun, Yi
AU - Wan, Feng
PY - 2020
Y1 - 2020
N2 - Bacterial biofilm represents a protected mode of bacterial growth that significantly enhances the resistance to antibiotics. Poly lactic-co-glycolic acid (PLGA)-based nanoparticle delivery systems have been intensively investigated to combat the bacterial biofilms-associated infections. However, some drawbacks associated with current PLGA-based nanoformulations (e.g. the relatively low drug loading capability, premature burst release and/or incapability of on-demand release of cargos at the site of action) restrict the transition from the lab research to the clinical applications. One potent strategy to overcome the above-mentioned limitations is exploiting the unique properties of carbon quantum dots (CQDs) and combining CQDs with the conventional PLGA nanoparticles. In the present study, the CQDs were innovatively incorporated into PLGA nanoparticles by using a microfluidic method. The resulting CQD-PLGA hybrid nanoparticles presented good loading capability of azithromycin (a macrolide antibiotic, AZI) and tobramycin (an aminoglycoside antibiotic, TOB), and stimuli-responsive release of the cargos upon laser irradiation. Consequently, AZI-loaded CQD-PLGA hybrid nanoparticles showed chemo-photothermally synergistic anti-biofilm effects against P. aeruginosa biofilms. Additionally, the CQD-PLGA hybrid nanoparticles demonstrated good biocompatibility with the eukaryotic cells. Overall, the proof-of-concept of CQD-PLGA hybrid nanoparticles may open a new possibility in chemo-photothermal therapy against bacterial biofilms.
AB - Bacterial biofilm represents a protected mode of bacterial growth that significantly enhances the resistance to antibiotics. Poly lactic-co-glycolic acid (PLGA)-based nanoparticle delivery systems have been intensively investigated to combat the bacterial biofilms-associated infections. However, some drawbacks associated with current PLGA-based nanoformulations (e.g. the relatively low drug loading capability, premature burst release and/or incapability of on-demand release of cargos at the site of action) restrict the transition from the lab research to the clinical applications. One potent strategy to overcome the above-mentioned limitations is exploiting the unique properties of carbon quantum dots (CQDs) and combining CQDs with the conventional PLGA nanoparticles. In the present study, the CQDs were innovatively incorporated into PLGA nanoparticles by using a microfluidic method. The resulting CQD-PLGA hybrid nanoparticles presented good loading capability of azithromycin (a macrolide antibiotic, AZI) and tobramycin (an aminoglycoside antibiotic, TOB), and stimuli-responsive release of the cargos upon laser irradiation. Consequently, AZI-loaded CQD-PLGA hybrid nanoparticles showed chemo-photothermally synergistic anti-biofilm effects against P. aeruginosa biofilms. Additionally, the CQD-PLGA hybrid nanoparticles demonstrated good biocompatibility with the eukaryotic cells. Overall, the proof-of-concept of CQD-PLGA hybrid nanoparticles may open a new possibility in chemo-photothermal therapy against bacterial biofilms.
KW - Carbon quantum dots
KW - PLGA nanoparticles
KW - Chemo-photothermal therapy
KW - Bacterial biofilms
KW - Azithromycin
KW - Tobramycin
U2 - 10.1016/j.jcis.2020.05.067
DO - 10.1016/j.jcis.2020.05.067
M3 - Journal article
C2 - 32473477
SN - 0021-9797
VL - 577
SP - 66
EP - 74
JO - Journal of Colloid and Interface Science
JF - Journal of Colloid and Interface Science
ER -