Synthesis and characterization of palladium(II) complexes with new diphosphonium-diphosphine and diphosphine ligands. Production of low molecular weight alternating polyketones via catalytic CO/ethene copolymerisation.

Claudio Bianchini, Peter Brüggeller, Carmen Claver, Georg Czermak, Alexander Dumfort, Andrea Meli, Werner Oberhauser, Eduardo J. Garcia-Suarez

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

The bis-cationic diphosphonium-diphosphine 6,7-di(di-2-methoxyphenyl)phosphinyl-2,2,4,4-tetra(di-2-methoxyphenyl)-2 lambda 4,4 lambda 4-diphosphoniumbicyclo[3.1.1]heptane-bis(PF6) ((o-MeO-PCP)(PF6)2) and the diphosphine rac-2,4-bis((di-2-methoxyphenyl)phosphino)pentane (rac-o-MeO-bdpp) have been synthesized. Both ligands have been employed to coordinate PdCl2 and Pd(OAc)2 to give [PdCl2(o-MeO-PCP)](PF6)2 (1a), PdCl2(rac-o-MeO-bdpp) (1b), [Pd(OAc)2(o-MeO-PCP)](PF6)2 (2a) and Pd(OAc)2(rac-o-MeO-bdpp) (2b). The ligands and complexes have been fully characterized in solution by multinuclear NMR spectroscopy. In addition, 1a and 1b have been authenticated by single crystal X-ray structure analyses. The Pd(II) complexes 1a and 1b have been employed as catalyst precursors for the CO/ethene copolymerisation in water-acetic acid mixtures, while 2a and 2b have been tested in methanol in the presence of p-toluenesulfonic acid. Irrespective of the reaction media, perfectly alternating polyketones were obtained in excellent yields and with number-average molecular weights ranging from 7.1-13.9 kg mol(-1) with the diphosphonium-diphosphine catalysts and from 37.2-48.2 kg mol(-1) with the diphosphine catalysts.
Original languageEnglish
JournalDalton Transactions
Issue number24
Pages (from-to)2964-2973
ISSN1477-9226
DOIs
Publication statusPublished - 2006
Externally publishedYes

Fingerprint Dive into the research topics of 'Synthesis and characterization of palladium(II) complexes with new diphosphonium-diphosphine and diphosphine ligands. Production of low molecular weight alternating polyketones via catalytic CO/ethene copolymerisation.'. Together they form a unique fingerprint.

Cite this