Synergy Effects of the Mixture of Bismuth Molybdate Catalysts with SnO2/ZrO2/MgO in Selective Propene Oxidation and the Connection between Conductivity and Catalytic Activity

Minh Thang Le, Van Hung Do, Duc Duc Truong, Els Bruneel, Isabel Van Driessche, Anders Riisager, Rasmus Fehrmann, Quang Thang Trinh

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Bismuth molybdate catalysts have been used for partial oxidation and ammoxidation of light hydrocarbons since the 1950s. In particular, there is the synergy effect (the enhancement of the catalytic activity in the catalysts mixed from different components) in different phases of bismuth molybdate catalysts which has been observed and studied since the 1980s; however, despite it being interpreted differently by different research groups, there is still no decisive conclusion on the origin of the synergy effect that has been obtained. The starting idea of this work is to find an answer for the question: does the electrical conductivity influence the catalytic activity (which has been previously proposed by some authors). In this work, highly conductive materials (SnO2, ZrO2) and nonconductive materials (MgO) are added to beta bismuth molybdates (beta-Bi2Mo2O9) using mechanical mixing, impregnation, and sol-gel methods. The mixtures were characterized by XRD, BET, XPS, and EDX techniques to determine the phase composition and surface properties. The conductivities of these samples were recorded at the catalytic reaction temperature (300-450 degrees C). Comparison of the catalytic activities of these mixtures showed that the addition of 10% mol SnO2 to beta bismuth molybdate resulted in the highest activity while the addition of nonconductive MgO could not increase the catalytic activity. This shows that there may be a connection between conductivity and catalytic activity in the mixtures of bismuth molybdate catalysts and other metal oxides.
Original languageEnglish
JournalIndustrial & Engineering Chemistry Research
Volume55
Issue number17
Pages (from-to)4846-4855
Number of pages10
ISSN0888-5885
DOIs
Publication statusPublished - 2016

Fingerprint Dive into the research topics of 'Synergy Effects of the Mixture of Bismuth Molybdate Catalysts with SnO2/ZrO2/MgO in Selective Propene Oxidation and the Connection between Conductivity and Catalytic Activity'. Together they form a unique fingerprint.

Cite this