TY - JOUR
T1 - Synergistic benefits from a lignin-first biorefinery of poplar via coupling acesulfamate ionic liquid followed by mild alkaline extraction
AU - Xu, Jikun
AU - Dai, Lin
AU - Gui, Yang
AU - Yuan, Lan
AU - Zhang, Chuntao
AU - Lei, Yang
PY - 2020
Y1 - 2020
N2 - A novel mind-set, termed lignin-first biorefinery, is bewitching to synchronously boost lignin output for entirely lignocellulosic utilization. A lignin-first fractionation, using a food-additive derived ionic liquid (1-ethyl-3-methylimidazolium acesulfamate, emimAce) and mild alkaline pretreatments, was formed for the purposely isolating poplar lignin, whilst delivering a cellulose-rich substrate that can be easily available for enzymatic digestion. The emimAce-driven lignin, alkali-soluble lignin and hemicellulose, and accessible cellulose were sequentially gained. We introduce a lignin-first approach to extract the amorphous fractions, destroy the robust architecture, and reform cellulose-I to II, thereby advancing the cellulose bioconversion from 15.4 to 90.5%. A harvest of 70.7% lignin, 52.1% hemicellulose, and 330.1 mg/g glucose was fulfilled from raw poplar. A structural ‘‘beginning-to-end’’ analysis of lignin inferred that emimAce ions are expected to interact with lignin β-aryl-ether due to their aromatic character. It was reasonable to derive benefits from lignin-first technique that can substantially augment the domain of biorefinering.
AB - A novel mind-set, termed lignin-first biorefinery, is bewitching to synchronously boost lignin output for entirely lignocellulosic utilization. A lignin-first fractionation, using a food-additive derived ionic liquid (1-ethyl-3-methylimidazolium acesulfamate, emimAce) and mild alkaline pretreatments, was formed for the purposely isolating poplar lignin, whilst delivering a cellulose-rich substrate that can be easily available for enzymatic digestion. The emimAce-driven lignin, alkali-soluble lignin and hemicellulose, and accessible cellulose were sequentially gained. We introduce a lignin-first approach to extract the amorphous fractions, destroy the robust architecture, and reform cellulose-I to II, thereby advancing the cellulose bioconversion from 15.4 to 90.5%. A harvest of 70.7% lignin, 52.1% hemicellulose, and 330.1 mg/g glucose was fulfilled from raw poplar. A structural ‘‘beginning-to-end’’ analysis of lignin inferred that emimAce ions are expected to interact with lignin β-aryl-ether due to their aromatic character. It was reasonable to derive benefits from lignin-first technique that can substantially augment the domain of biorefinering.
KW - Lignin-first biorefinery
KW - Ionic liquid
KW - Alkaline pretreatment
KW - Hemicellulose
KW - Enzymatic hydrolysis
U2 - 10.1016/j.biortech.2020.122888
DO - 10.1016/j.biortech.2020.122888
M3 - Journal article
C2 - 32028215
SN - 0960-8524
VL - 303
JO - Bioresource Technology
JF - Bioresource Technology
M1 - 122888
ER -