Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability

Emily E. Riley, Debasish Das, Eric Lauga*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

175 Downloads (Pure)

Abstract

Peritrichously-flagellated bacteria, such as Escherichia coli, self-propel in fluids by using specialised motors to rotate multiple helical filaments. The rotation of each motor is transmitted to a short flexible segment called the hook which in turn transmits it to a flagellar filament, enabling swimming of the whole cell. Since multiple motors are spatially distributed on the body of the organism, one would expect the propulsive forces from the filaments to push against each other leading to negligible swimming. We use a combination of computations and theory to show that the swimming of peritrichous bacteria is enabled by an elastohydrodynamic bending instability occurring for hooks more flexible than a critical threshold. Using past measurements of hook bending stiffness, we demonstrate how real bacteria are safely on the side of the instability that promotes systematic swimming.
Original languageEnglish
Article number10728
JournalScientific Reports
Volume8
Issue number1
ISSN2045-2322
DOIs
Publication statusPublished - 2018

Keywords

  • FLUORESCENT FLAGELLAR FILAMENTS
  • ESCHERICHIA-COLI
  • MICROORGANISMS
  • HYDRODYNAMICS
  • PROPULSION
  • ROTATION
  • HOOK
  • Science & Technology
  • Physiology - General
  • Physiology and biochemistry of bacteria
  • Bacteria, Eubacteria, Microorganisms
  • systematic swimming
  • elastohydrodynamic bending instability
  • Multidisciplinary
  • article
  • rigidity
  • swimming

Fingerprint Dive into the research topics of 'Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability'. Together they form a unique fingerprint.

Cite this