TY - JOUR
T1 - SViT
T2 - a Spectral Vision Transformer for the Detection of REM Sleep Behavior Disorder
AU - Gunter, Katarina Mary
AU - Brink-Kjær, Andreas
AU - Mignot, Emmanuel
AU - Sorensen, Helge B.D.
AU - During, Emmanuel
AU - Jennum, Poul
N1 - Publisher Copyright:
IEEE
PY - 2023
Y1 - 2023
N2 - REM sleep behavior disorder (RBD) is a parasomnia with dream enactment and presence of REM sleep without atonia (RSWA). RBD diagnosed manually via polysomnography (PSG) scoring, which is time intensive. Isolated RBD (iRBD) is also associated with a high probability of conversion to Parkinson's disease. Diagnosis of iRBD is largely based on clinical evaluation and subjective PSG ratings of REM sleep without atonia. Here we show the first application of a novel spectral vision transformer (SViT) to PSG signals for detection of RBD and compare the results to the more conventional convolutional neural network architecture. The vision-based deep learning models were applied to scalograms (30 or 300 second windows) of the PSG data (EEG, EMG and EOG) and the predictions interpreted. A total of 153 RBD (96 iRBD and 57 RBD with PD) and 190 controls were included in the study and 5-fold bagged ensemble was used. Model outputs were analyzed per-patient (averaged), with regards to sleep stage, and the SViT was interpreted using integrated gradients. Models had a similar per-epoch test F1 score. However, the vision transformer had the best per-patient performance, with an F1 score 0.87. Training the SViT on channel subsets, it achieved an F1 score of 0.93 on a combination of EEG and EOG. EMG is thought to have the highest diagnostic yield, but interpretation of our model showed that high relevance was placed on EEG and EOG, indicating these channels could be included for diagnosing RBD.
AB - REM sleep behavior disorder (RBD) is a parasomnia with dream enactment and presence of REM sleep without atonia (RSWA). RBD diagnosed manually via polysomnography (PSG) scoring, which is time intensive. Isolated RBD (iRBD) is also associated with a high probability of conversion to Parkinson's disease. Diagnosis of iRBD is largely based on clinical evaluation and subjective PSG ratings of REM sleep without atonia. Here we show the first application of a novel spectral vision transformer (SViT) to PSG signals for detection of RBD and compare the results to the more conventional convolutional neural network architecture. The vision-based deep learning models were applied to scalograms (30 or 300 second windows) of the PSG data (EEG, EMG and EOG) and the predictions interpreted. A total of 153 RBD (96 iRBD and 57 RBD with PD) and 190 controls were included in the study and 5-fold bagged ensemble was used. Model outputs were analyzed per-patient (averaged), with regards to sleep stage, and the SViT was interpreted using integrated gradients. Models had a similar per-epoch test F1 score. However, the vision transformer had the best per-patient performance, with an F1 score 0.87. Training the SViT on channel subsets, it achieved an F1 score of 0.93 on a combination of EEG and EOG. EMG is thought to have the highest diagnostic yield, but interpretation of our model showed that high relevance was placed on EEG and EOG, indicating these channels could be included for diagnosing RBD.
U2 - 10.1109/JBHI.2023.3292231
DO - 10.1109/JBHI.2023.3292231
M3 - Journal article
C2 - 37402190
AN - SCOPUS:85164386707
SN - 2168-2194
VL - 27
SP - 4285
EP - 4292
JO - IEEE Journal of Biomedical and Health Informatics
JF - IEEE Journal of Biomedical and Health Informatics
IS - 9
ER -