Suspended particle transport through constriction channel with Brownian motion

Itsuo Hanasaki, Jens Honore Walther

Research output: Contribution to journalJournal articleResearchpeer-review

273 Downloads (Pure)

Abstract

It is well known that translocation events of a polymer or rod through pores or narrower parts of micro- and nanochannels have a stochastic nature due to the Brownian motion. However, it is not clear whether the objects of interest need to have a larger size than the entrance to exhibit the deviation from the dynamics of the surrounding fluid. We show by numerical analysis that the particle injection into the narrower part of the channel is affected by thermal fluctuation, where the particles have spherical symmetry and are smaller than the height of the constriction. The Péclet number (Pe) is the order parameter that governs the phenomena, which clarifies the spatio-temporal significance of Brownian motion compared to hydrodynamics. Furthermore, we find that there exists an optimal condition of Pe to attain the highest flow rate of particles relative to the dispersant fluid flow. Our finding is important in science and technology from nanopore DNA sequencers and lab-on-a-chip devices to filtration by porous materials and chromatography.
Original languageEnglish
Article number023109
JournalPhysical Review E (Statistical, Nonlinear, and Soft Matter Physics)
Volume96
Number of pages8
ISSN2470-0045
DOIs
Publication statusPublished - 2017

Fingerprint Dive into the research topics of 'Suspended particle transport through constriction channel with Brownian motion'. Together they form a unique fingerprint.

Cite this