Surface self-assembled hybrid nanocomposites with electroactive nanoparticles and enzymes confined in a polymer matrix for controlled electrocatalysis

A three-dimensional network of highly branched poly(ethyleneimine) (PEI) is designed and synthesized on gold electrode surfaces. A self-assembled monolayer (SAM) of dithiobis(succinimidyl propionate) (DTSP) on a gold electrode was first prepared, which is confirmed by the reductive desorption of Au-S units. The PEI polymer was then covalently immobilized onto the DTSP layer, leaving free primary amine groups acting as a 3D skeleton for high loading of electroactive enzyme-size Prussian blue nanoparticles (PBNPs, 6 nm) via electrostatic trapping. Atomic force microscopy was used to disclose the microscopic structures of the different layers during the surface architecture formation. The resulting surface-bound nanostructured composite shows high electrochemical activity arising from confined PBNPs, and acts as an efficient electrocatalyst towards H₂O₂ reduction. Facile electron communication is achieved as reflected by a large electron transfer (ET) rate constant (kₛ) of 200 s⁻¹, and the possible electron propagation mechanisms in the polymer network are discussed. This surface/interfacial nanocomposite can be further used in the accommodation of enzymes for electrochemical bio-catalysis. Glucose oxidase (GOD) was used towards this end, in a proof-of-concept study. This enzyme can be co-trapped in the PEI matrix and is interconnected with PBNPs, leading to highly efficient electrocatalytic oxidation and detection of glucose.

General information
Publication status: Published
Organisations: NanoChemistry, Department of Chemistry
Contributors: Zhu, N., Ulstrup, J., Chi, Q.
Number of pages: 10
Pages: 8133-8142
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Journal of Materials Chemistry B
Volume: 3
Issue number: 41
ISSN (Print): 2050-750X
Ratings:
 - BFI (2015): BFI-level 1
 - Scopus rating (2015): CiteScore 5.14 SJR 1.537 SNIP 1.135
 - Web of Science (2015): Indexed yes
Original language: English
DOIs:
 - 10.1039/c5tb01672j
Source: FindIt
Source-ID: 2281437151
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review