Surface modification of polysulfone membranes applied for a membrane reactor with immobilized alcohol dehydrogenase

Commercially available polysulfone (PSf) membranes with a polypropylene backing are used across a broad range of applications. However, the natural properties of the PSf surface sometimes limit their application. Here we present, how the surface of supported membranes can be heterogeneously activated by lithiation followed by functionalization with acid chlorides at 0°C, permitting modification of commercial PSf membranes without compromising the mechanical integrity of the membrane. Post-functionalization polymer grafting was illustrated through both, a “grafting from” approach by surface initiated atom transfer radical polymerization (SI-ATRP) and by a “grafting to” approach exploiting Cu(I) catalyzed 1,3-cycloadditions of alkynes with azides (CuAAC) introducing hydrophilic polymers onto the membrane surface. Poly(1-vinyl imidazole) (pVim) grafted membranes were exploited as support for immobilization of alcohol dehydrogenase (ADH) in a biocatalytic membrane reactor (BMR) and demonstrated substantial improvements in terms of operational enzyme stability compared to immobilization onto pristine membranes.

General information
Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, The Danish Polymer Centre, Center for BioProcess Engineering, KT Consortium, PROSYS - Process and Systems Engineering Centre
Corresponding author: Daugaard, A. E.
Pages: 160-168
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Materials Today Communications
Volume: 14
ISSN (Print): 2352-4928
Ratings:
Scopus rating (2018): CiteScore 1.98 SJR 0.462 SNIP 0.686
Web of Science (2018): Impact factor 1.859
Web of Science (2018): Indexed yes
Original language: English
Keywords: Materials Science (all), Mechanics of Materials, Materials Chemistry, Enzyme immobilization, Polysulfone membrane, Surface functionalization
DOIs: 10.1016/j.mtcomm.2017.12.019
Source: FindIt
Source ID: 2398096507
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review