TY - JOUR
T1 - Surface-MALDI mass spectrometry in biomaterials research
AU - Griesser, H.J.
AU - Kingshott, P.
AU - McArthur, S.L.
AU - McLean, K.M.
AU - Kinsel, G.R.
AU - Timmons, R.B.
PY - 2004
Y1 - 2004
N2 - Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been used for over a decade for the determination of purity and accurate molecular masses of macromolecular analytes, such as proteins, in solution. In the last few years the technique has been adapted to become a new surface analysis method with unique capabilities that complement established biomaterial surface analysis methods such as XPS and ToF-SSIMS. These new MALDI variant methods, which we shall collectively summarize as Surface-MALDI-MS, are capable of desorbing adsorbed macromolecules from biomaterial surfaces and detecting their molecular ions with high mass resolution and at levels much below monolayer coverage. Thus, Surface-MALDI-MS offers unique means of addressing biomaterial surface analysis needs, such as identification of the proteins and lipids that adsorb from multicomponent biological solutions in vitro and in vivo, the study of interactions between biomaterial surfaces and biomolecules, and identification of surface-enriched additives and contaminants. Surface-MALDI-MS is rapid, experimentally convenient, overcomes limitations in mass resolution and sensitivity of established biochemical techniques such as SDS-PAGE, and can in some circumstances be used for the quantitative analysis of adsorbed protein amounts. At this early stage of development, however, limitations exist: in some cases proteins are not detectable, which appears to be related to tight surface binding. This review summarizes ways in which Surface-MALDI-MS methods have been applied to the study of a range of issues in biomaterials surfaces research. (C) 2004 Elsevier Ltd. All rights reserved.
AB - Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been used for over a decade for the determination of purity and accurate molecular masses of macromolecular analytes, such as proteins, in solution. In the last few years the technique has been adapted to become a new surface analysis method with unique capabilities that complement established biomaterial surface analysis methods such as XPS and ToF-SSIMS. These new MALDI variant methods, which we shall collectively summarize as Surface-MALDI-MS, are capable of desorbing adsorbed macromolecules from biomaterial surfaces and detecting their molecular ions with high mass resolution and at levels much below monolayer coverage. Thus, Surface-MALDI-MS offers unique means of addressing biomaterial surface analysis needs, such as identification of the proteins and lipids that adsorb from multicomponent biological solutions in vitro and in vivo, the study of interactions between biomaterial surfaces and biomolecules, and identification of surface-enriched additives and contaminants. Surface-MALDI-MS is rapid, experimentally convenient, overcomes limitations in mass resolution and sensitivity of established biochemical techniques such as SDS-PAGE, and can in some circumstances be used for the quantitative analysis of adsorbed protein amounts. At this early stage of development, however, limitations exist: in some cases proteins are not detectable, which appears to be related to tight surface binding. This review summarizes ways in which Surface-MALDI-MS methods have been applied to the study of a range of issues in biomaterials surfaces research. (C) 2004 Elsevier Ltd. All rights reserved.
KW - 7-I poly
U2 - 10.1016/j.biomaterials.2004.01.049
DO - 10.1016/j.biomaterials.2004.01.049
M3 - Journal article
SN - 0142-9612
VL - 25
SP - 4861
EP - 4875
JO - Biomaterials
JF - Biomaterials
IS - 20
ER -