Surface Enhanced Raman Scattering for Quantification of p-Coumaric Acid Produced by Escherichia coli

The number of newly developed genetic variants of microbial cell factories for production of biochemicals has been rapidly growing in recent years, leading to an increased need for new screening techniques. We developed a method based on surface-enhanced Raman scattering (SERS) coupled with liquid-liquid extraction (LLE) for quantification of p-coumaric acid (pHCA) in the supernatant of genetically engineered Escherichia coli (E. coli) cultures. pHCA was measured in a dynamic range from 1 μM up to 50 μM on highly uniform SERS substrates based on leaning gold-capped nanopillars, which showed an in-wafer signal variation of only 11.7%. LLE using dichloromethane as organic phase was combined with the detection in order to increase selectivity and sensitivity by decreasing the effect of interfering compounds from the analytes of interest. The difference in pHCA production yield between three genetically engineered E. coli strains was successfully evaluated using SERS and confirmed with high-performance liquid chromatography. As this novel approach has potential to be automated and parallelized, it can be considered for high-throughput screening in metabolic engineering.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factory Optimization, Research Groups, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics
Contributors: Morelli, L., Zor, K., Jendresen, C. B., Rindzevicius, T., Schmidt, M. S., Nielsen, A. T., Boisen, A.
Number of pages: 7
Pages: 3981-3987
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Analytical chemistry
Volume: 89
ISSN (Print): 0003-2700
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.24
Web of Science (2017): Impact factor 6.042
Web of Science (2017): Indexed yes
Original language: English
Electronic versions:
pp_Surface_enhanced_Raman_scattering_for_quantification_of_p_coumaric_ac.._.pdf
DOIs:
10.1021/acs.analchem.6b04428
Source: FindIt
Source ID: 2352823102
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review