Supply Chain Optimization of Integrated Glycerol Biorefinery: GlyThink Model Development and Application - DTU Orbit (09/11/2019)

Supply Chain Optimization of Integrated Glycerol Biorefinery: GlyThink Model Development and Application

To further advance the development and implementation of glycerol-based biorefinery concepts, it is critical to analyze the glycerol conversion into high value-added products in a holistic manner, considering both production as well as the logistics aspects related to the supply chain structure. To address the optimal design and planning of the glycerol-based biorefinery supply chain, in this work, we propose a multiperiod, multistage, and multiproduct Mixed Integer Linear Programming optimization model, called GlyThink, based upon the maximization of the net present value (NPV). The proposed model is able to identify operational decisions, including locations, capacity levels, technologies, and product portfolio, as well as strategic decisions such as inventory levels, production amounts, and transportation to the final markets. Several technologies are considered for the glycerol valorization to high value-added products. Existing countries with major production and consumption of biodiesel in Europe are considered as candidates for the facility sites and demand markets, and their spatial distribution is also carefully studied. The results showed that (i) the optimal solution that provides the best NPV is obtained by establishing a multiplant supply chain for the glycerol-based integrated biorefinery, built upon four plant site locations (Germany, France, The Netherlands, and Italy); (ii) if a single-plant alternative is to be selected, Germany stands out as potentially the best location for the integrated biorefinery; (iii) government incentives might play a decisive role in the growth of a glycerol-based economy showing improved economic feasibility; and, last, (iv) the optimal product portfolio suggested is based on the production of succinic acid and lactic acid, followed by epichlorohydrin and poly-3-hydroxybutyrate (PHB).

General information

Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, CAPEC-PROCESS, University of Lisbon
Contributors: Loureiro da Costa Lira Gargalo, C., Carvalho, A., Gernaey, K., Sin, G.
Pages: 6711-6727
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Industrial and Engineering Chemistry Research
Volume: 56
Issue number: 23
ISSN (Print): 0888-5885
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.4 SJR 0.978 SNIP 1.19
Web of Science (2017): Impact factor 3.141
Web of Science (2017): Indexed yes
Original language: English
DOIs: 10.1021/acs.iecr.7b00908
Source: FindIt
Source ID: 2358693775
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review