Supercontinuum based mid-IR imaging spectroscopy for cancer detection

Ole Bang, Uffe Visbech Møller, Irnis Kubat, Christian Rosenberg Petersen

    Research output: Chapter in Book/Report/Conference proceedingConference abstract in proceedingsResearchpeer-review


    The mid-infrared (IR) spectral region is of significant technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinct spectral fingerprints. To date, the limitations of mid-IR light sources, such as thermal emitters, low-power laser diodes, quantum cascade lasers and synchrotron radiation, have precluded mid-IR applications where the spatial coherence, broad bandwidth, high brightness and portability of a supercontinuum laser are all required. In an international collaboration in the EU project MINERVA [] DTU Fotonik has now demonstrated the first optical fiber based broadband so-called supercontinuum light souce, which covers 1.4-13.3 μm and thereby most of the molecular fingerprint region [1]. This ultra-fast light source is the basic component in the mid-IR camera developed in MINERVA for early cancer detection with mid-IR imaging spectroscopy.
    Original languageEnglish
    Title of host publicationAbstract Book - DTU Sustain Conference 2014
    Number of pages1
    Place of PublicationKgs. Lyngby
    PublisherTechnical University of Denmark
    Publication date2014
    Publication statusPublished - 2014
    EventDTU Sustain Conference 2014 - Technical University of Denmark, Lyngby, Denmark
    Duration: 17 Dec 201417 Dec 2014


    ConferenceDTU Sustain Conference 2014
    LocationTechnical University of Denmark
    Internet address


    Dive into the research topics of 'Supercontinuum based mid-IR imaging spectroscopy for cancer detection'. Together they form a unique fingerprint.

    Cite this