Superchilling in combination with modified atmosphere packaging resulted in long shelf-life and limited microbial growth in Atlantic cod (Gadus morhua L.) from capture-based-aquaculture in Greenland

Jonas Steenholdt Sørensen*, Niels Bøknæs, Ole Mejlholm, Paw Dalgaard

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Sensory, chemical and microbial changes for Atlantic cod (Gadus morhua L.) filets from capture-based-aquaculture in Greenland were studied. The objective was to determine shelf-life and indices of spoilage for iced or superchilled fillets when stored in air, or modified atmosphere packed (MAP; 40% CO2 and 60% N2). MAP iced storage extended the sensory shelf-life from 15 days to 21 days compared to storage in air. With superchilling at -1.7 ○C sensory shelf-life was above 32 days, and no formation of total volatile nitrogen (TVN) was observed irrespective of storage in air or MAP. pH of ≥7.0, TVN (≥35 mg-N/100g) and trimethylamine (≥20 mg-N TMA/100g) were promising indices of spoilage. Aerobic viable counts were less valuable indices of spoilage as the dominating microbiota of cod in air (Pseudomonas spp., Photobacterium spp., Shewanella spp., Acinetobacter spp.) changed to Photobacterium spp. in MAP cod. Spoilage activity determined as the yield factor for TVN formation was 6-200 folds higher for Photobacterium spp. compared to Shewanella spp. and Pseudomonas spp. Photobacterium carnosum was responsible for TVN formation in iced cod irrespective of storage in air or MAP, and it was identified at the specific spoilage organism that limited iced product shelf-life.
Original languageEnglish
Article number103405
JournalFood Microbiology
Volume88
Number of pages11
ISSN0740-0020
DOIs
Publication statusPublished - 2020

Cite this