Sulfonated copolyimide membranes derived from a novel diamine monomer with pendant benzimidazole groups for fuel cells - DTU Orbit (29/09/2019)

Sulfonated copolyimide membranes derived from a novel diamine monomer with pendant benzimidazole groups for fuel cells

Sulfonated copolyimides are among the most interesting proton exchange membrane materials with high proton conductivity and good mechanical characteristics. As a major challenge the hydrolytic instability of the polymer backbone is addressed by introducing basic moieties in the polymer main chain. A series of sulfonated copolyimides (SPI) are prepared via random copolymerization of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) with a new diamine monomer with pendant benzimidazole groups, 2,2'-bis(4-(1H-benzo[d]imidazol-2-yl)phenoxy)benzidine (BIPOB), and a sulfonated diamine monomer 4,4'-bis(4-aminophenoxy)biphenyl-3,3'-disulfonic acid (BAPBDS) at different diamine molar ratios (BAPBDS/BIPOB, 4/1, 6/1, 9/1 and 12/1). With ion exchange capacities in the range of 1.60-2.24 meq g(-1), transparent and ductile membranes are obtained by solution casting. The incorporation of benzimidazole pendant groups significantly improves the hydrolytic stability as well as the radical oxidative stability of the membranes. In addition, the SPI membranes exhibit high proton conductivities of 0.1 S cm(-1) in the fully hydrated state at 60 degrees C and high elastic modulus and tensile strength. Preliminary fuel cell tests demonstrate the technical feasibility and stability of the materials. (C) 2015 Elsevier B.V. All rights reserved.

General information
Publication status: Published
Organisations: Department of Energy Conversion and Storage, Proton conductors, Shanghai Jiao Tong University
Contributors: Li, W., Guo, X., Aili, D., Fernandez, S. M., Li, Q., Fang, J.
Number of pages: 10
Pages: 44-53
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Journal of Membrane Science
Volume: 481
ISSN (Print): 0376-7388
Ratings:
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.89 SJR 1.978 SNIP 1.766
Web of Science (2015): Impact factor 5.557
Web of Science (2015): Indexed yes
Original language: English
Keywords: ENGINEERING,, POLYMER, PROTON-EXCHANGE MEMBRANES, POLYMER ELECTROLYTE MEMBRANE, POLYIMIDE MEMBRANES, WATER STABILITY, HYDROLYTIC DEGRADATION, CONDUCTING MEMBRANES, ACID, POLYBENZIMIDAZOLE, POLYELECTROLYTES, TRANSPORT, Sulfonated polyimide, Proton exchange membrane fuel cell, Radical oxidative stability, Hydrolytic stability, Amines, Fuel cells, Ion exchange, Ion exchange membranes, Mechanical properties, Membranes, Monomers, Oxidation resistance, Polymides, Proton conductivity, Stability, Tensile strength, High elastic modulus, Ion exchange capacity, Mechanical characteristics, Proton exchange membranes, Sulfonated copolyimide, Sulfonated polyimides, Proton exchange membrane fuel cells (PEMFC)
DOIs:
10.1016/j.memsci.2015.01.048
Source: FindIt
Source ID: 274160106
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review