Study of tip loss corrections using CFD rotor computations

Wen Zhong Shen, Wei Jun Zhu, Jens Nørkær Sørensen

    Research output: Contribution to journalConference articleResearchpeer-review

    614 Downloads (Pure)

    Abstract

    Tip loss correction is known to play an important role for engineering prediction of wind turbine performance. There are two different types of tip loss corrections: tip corrections on momentum theory and tip corrections on airfoil data. In this paper, we study the latter using detailed CFD computations for wind turbines with sharp tip. Using the technique of determination of angle of attack and the CFD results for a NordTank 500 kW rotor, airfoil data are extracted and a new tip loss function on airfoil data is derived. To validate, BEM computations with the new tip loss function are carried out and compared with CFD results for the NordTank 500 kW turbine and the NREL 5 MW turbine. Comparisons show that BEM with the new tip loss function can predict correctly the loading near the blade tip.
    Original languageEnglish
    Article number012094
    Book seriesJournal of Physics: Conference Series (Online)
    Volume555
    Number of pages9
    ISSN1742-6596
    DOIs
    Publication statusPublished - 2014
    EventThe science of Making Torque from Wind 2012: 4th scientific conference - Universität Oldenburg, Oldenburg, Germany
    Duration: 9 Oct 201211 Oct 2012
    http://www.forwind.de/makingtorque/Home.html

    Conference

    ConferenceThe science of Making Torque from Wind 2012
    LocationUniversität Oldenburg
    Country/TerritoryGermany
    CityOldenburg
    Period09/10/201211/10/2012
    Internet address

    Bibliographical note

    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

    Fingerprint

    Dive into the research topics of 'Study of tip loss corrections using CFD rotor computations'. Together they form a unique fingerprint.

    Cite this