Abstract
The aim of this work was to evaluate the impact of the fungicide fenhexamid (FEX) on the genetic structure of soil bacterial communities using the Ribosomal Intergenic Spacer Analysis molecular technique. Using real-time PCR, we also tried to quantify the pcaH sequences which encode the dioxygenases involved in the degradation process of a variety of aromatic compounds. Soil taken from a vineyard in the Etna Park (Sicily, Italy) was treated with FEX in the ratio 2 µg g-1 soil every 7 days, the process being repeated four times. The analyses were carried out before treatment and 7 days after each further application of FEX. At the same time, the degradation rate was evaluated. The use of FEX determined a variation in the bacterial component of the soil which could be seen in an increase of some microbial strains and the inhibition of others. The pcaH sequence was already present in the genes of the soil microrganisms studied, but the use of FEX increased the number of the gene copies. These results suggest that the microbial population of the soil adapted to the presence of FEX with an increase in degradation potential. The measurements of the extent to which FEX was degraded confirm this hypothesis, showing that the molecule disappeared more quickly with successive applications.
Original language | English |
---|---|
Journal | International Journal of Environmental Analytical Chemistry |
Volume | 87 |
Pages (from-to) | 949-956 |
ISSN | 0306-7319 |
DOIs | |
Publication status | Published - 2007 |
Keywords
- Real-time PCR
- Fenhexamid
- Soil microflora
- RISA