TY - JOUR
T1 - Structure–Activity Relationship Study of Selective Excitatory Amino Acid Transporter Subtype 1 (EAAT1) Inhibitor 2-Amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (UCPH-101) and Absolute Configurational Assignment Using Infrared and Vibrational Circular Dichroism Spectroscopy in Combination with ab Initio Hartree–Fock Calculations
AU - Huynh, Tri H.V.
AU - Shim, Irene
AU - Bohr, Henrik
AU - Abrahamsen, Bjarke
AU - Nielsen, Birgitte
AU - Jensen, Anders A.
AU - Bunch, Lennart
N1 - © 2012 American Chemical Society
PY - 2012
Y1 - 2012
N2 - The excitatory amino acid transporters (EAATs) play essential roles in regulating the synaptic concentration of the neurotransmitter glutamate in the mammalian central nervous system. To date, five subtypes have been identified, named EAAT1–5 in humans, and GLAST, GLT-1, EAAC1, EAAT4, and EAAT5 in rodents, respectively. In this paper, we present the design, synthesis, and pharmacological evaluation of seven 7-N-substituted analogues of UCPH-101/102. Analogue 9 inhibited EAAT1 in the micromolar range (IC50 value 20 μM), whereas analogues 8 and 10 were inactive (IC50 values >100 μM). The diastereomeric pairs 11a/11b and 12a/12b were separated by HPLC and the absolute configuration assigned by VCD technique in combination with ab initio Hartree–Fock calculations. Analogues 11a (RS-isomer) and 12b (RR-isomer) inhibited EAAT1 (IC50 values 5.5 and 3.8 μM, respectively), whereas analogues 11b (SS-isomer) and 12a (SR-isomer) failed to inhibit EAAT1 uptake (IC50 values >300 μM).
AB - The excitatory amino acid transporters (EAATs) play essential roles in regulating the synaptic concentration of the neurotransmitter glutamate in the mammalian central nervous system. To date, five subtypes have been identified, named EAAT1–5 in humans, and GLAST, GLT-1, EAAC1, EAAT4, and EAAT5 in rodents, respectively. In this paper, we present the design, synthesis, and pharmacological evaluation of seven 7-N-substituted analogues of UCPH-101/102. Analogue 9 inhibited EAAT1 in the micromolar range (IC50 value 20 μM), whereas analogues 8 and 10 were inactive (IC50 values >100 μM). The diastereomeric pairs 11a/11b and 12a/12b were separated by HPLC and the absolute configuration assigned by VCD technique in combination with ab initio Hartree–Fock calculations. Analogues 11a (RS-isomer) and 12b (RR-isomer) inhibited EAAT1 (IC50 values 5.5 and 3.8 μM, respectively), whereas analogues 11b (SS-isomer) and 12a (SR-isomer) failed to inhibit EAAT1 uptake (IC50 values >300 μM).
U2 - 10.1021/jm300345z
DO - 10.1021/jm300345z
M3 - Journal article
SN - 0022-2623
VL - 55
SP - 5403
EP - 5412
JO - Journal of Medicinal Chemistry
JF - Journal of Medicinal Chemistry
IS - 11
ER -