Structure and thermoelectric properties of Ca$_{2-x}$Sr$_x$FeMoO$_6$ (0 \leq x \leq 0.3) double-perovskite oxides

The thermoelectric properties of double perovskite-type oxides Ca$_2$FeMoO$_6$ are investigated in terms of Sr substitution at the A site of the oxides. The electrical conductivity, σ, of Ca$_{2-x}$Sr$_x$FeMoO$_6$ (0 \leq x \leq 0.3) showed a metallic behavior, decreasing monotonically from ca. 103 S cm$^{-1}$ at room temperature to ca. 102 S cm$^{-1}$ at 1250 K. At room temperature, although the values of the oxides increased with increasing substitution level, x, the values maintained almost the same values at high temperature range of 1000–1250 K. The absolute values of the Seebeck coefficient, S, for the samples at x $<$ 0.3 abruptly increase at around 1000 K. The Rietveld refinement of the XRD patterns of the oxides indicated that the anti-site defects in the oxides decreased with increasing Sr concentration. The power factor, S^2, of the oxides largely increased with increasing temperature; the S^2 value of Ca$_2$FeMoO$_6$ was ca. 0.35 mW mK$^{-2}$ at 1200 K, the largest value of all the samples in this study. Although the thermal conductivity, κ, of the oxides generally decreased from ca. 3.5 to 4.5 W mK$^{-1}$ at room temperature to ca. 2–3 W mK$^{-1}$ at 1050 K, the sample at x = 0.3 showed the lowest and most T-independent values, implying that the relative increase in the temperature is independent from the phonon-impurity scattering caused by the A-site substitution. The power factor of the oxides increased above 900 K; thereby, the dimensionless figure of merit, $ZT = (S^2/\kappa)T$, significantly increased at the same temperature range. The largest ZT value of 0.15 was observed for Ca$_2$FeMoO$_6$, Ca$_{1.9}$Sr$_{0.1}$FeMoO$_6$, and Ca$_{1.8}$Sr$_{0.2}$FeMoO$_6$ at 1250 K. © 2012 Elsevier B.V. All rights reserved.

General information
Publication status: Published
Organisations: Electrofunctional materials, Department of Energy Conversion and Storage, Osaka University, Kyushu University
Contributors: Sugahara, T., Van Nong, N., Ohtaki, M.
Pages: 630-634
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Materials Chemistry and Physics
Volume: 133
Issue number: 2-3
ISSN (Print): 0254-0584
Ratings:
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.41 SJR 0.912 SNIP 1.422
Web of Science (2012): Impact factor 2.072
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Original language: English
Keywords: Oxide, Double-perovskite, Thermoelectric property, Rietveld analysis
DOIs:
10.1016/j.matchemphys.2012.01.032
Source: orbit
Source-ID: 319000
Research output: Contribution to journal › Journal article – Annual report year: 2012 › Research › peer-review