Structural Emergency Control Paradigm

Thanh Long Vu, Spyros Chatzivasileiadis, Hsiao-Dong Chiang, Konstantin Turitsyn

    Research output: Contribution to journalJournal articleResearchpeer-review

    236 Downloads (Pure)

    Abstract

    Power grids normally operate at some stable operating condition where power supply and demand are balanced. In response to emergency situations, load shedding is a prevailing approach where local protective devices are activated to cut a suitable amount of load to quickly rebalance the supply demand and hopefully stabilize the system. This traditional emergency control results in interrupted service with severe economic damage to customers. Also, such control is usually less effective due to the lack of coordination among protective devices. In this paper, we propose a novel structural emergency control to render post-fault dynamics from the critical/emergency fault cleared state to the stable equilibrium point. This is a new control paradigm that does not rely on any continuous measurement or load shedding, as in the classical setup. Instead, the grid is made stable by discretely relocating the equilibrium point and its stability region, such that the system is consecutively attracted from the fault-cleared state back to the original equilibrium point. The proposed control is designed by solving linear and convex optimization problems, making it possibly scalable to large-scale power grids. Finally, this emergency control scheme can be implemented by exploiting transmission facilities available on the existing grids.
    Original languageEnglish
    JournalIEEE Journal on Emerging and Selected Topics in Circuits and Systems
    Volume7
    Issue number3
    Pages (from-to)371-382
    Number of pages11
    ISSN2156-3357
    DOIs
    Publication statusPublished - 2017

    Keywords

    • Power grids
    • Emergency control
    • Interconnected systems
    • Synchronization

    Fingerprint

    Dive into the research topics of 'Structural Emergency Control Paradigm'. Together they form a unique fingerprint.

    Cite this