TY - JOUR
T1 - Structural and magnetic properties of ball milled copper ferrite
AU - Goya, G.F.
AU - Rechenberg, H.R.
AU - Jiang, Jianzhong
N1 - Copyright (1998) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
PY - 1998
Y1 - 1998
N2 - The structural and magnetic evolution in copper ferrite (CuFe2O4) caused by high-energy ball milling are investigated by x-ray diffraction, Mössbauer spectroscopy, and magnetization measurements. Initially, the milling process reduces the average grain size of CuFe2O4 to about 6 nm and induces cation redistribution between A and B sites. These nanometer-sized particles show superparamagnetic relaxation effects at room temperature. It is found that the magnetization is not saturated even with an applied field of 9 T, possibly as the result of spin canting in the partially inverted CuFe2O4. The canted spin configuration is also suggested by the observed reduction in magnetization of particles in the blocked state. Upon increasing the milling time, nanometer-sized CuFe2O4 particles decompose, forming alpha-Fe2O3 and other phases, causing a further decrease of magnetization. After a milling time of 98 h, alpha-Fe2O3 is reduced to Fe3O4, and magnetization increases accordingly to the higher saturation magnetization value of magnetite. Three sequential processes during high-energy ball milling are established: (a) the synthesis of partially inverted CuFe2O4 particles with a noncollinear spin structure, (b) the decomposition of the starting CuFe2O4 onto several related Fe–Cu–O phases, and (c) the reduction of alpha-Fe2O3 to Fe3O4. ©1998 American Institute of Physics.
AB - The structural and magnetic evolution in copper ferrite (CuFe2O4) caused by high-energy ball milling are investigated by x-ray diffraction, Mössbauer spectroscopy, and magnetization measurements. Initially, the milling process reduces the average grain size of CuFe2O4 to about 6 nm and induces cation redistribution between A and B sites. These nanometer-sized particles show superparamagnetic relaxation effects at room temperature. It is found that the magnetization is not saturated even with an applied field of 9 T, possibly as the result of spin canting in the partially inverted CuFe2O4. The canted spin configuration is also suggested by the observed reduction in magnetization of particles in the blocked state. Upon increasing the milling time, nanometer-sized CuFe2O4 particles decompose, forming alpha-Fe2O3 and other phases, causing a further decrease of magnetization. After a milling time of 98 h, alpha-Fe2O3 is reduced to Fe3O4, and magnetization increases accordingly to the higher saturation magnetization value of magnetite. Three sequential processes during high-energy ball milling are established: (a) the synthesis of partially inverted CuFe2O4 particles with a noncollinear spin structure, (b) the decomposition of the starting CuFe2O4 onto several related Fe–Cu–O phases, and (c) the reduction of alpha-Fe2O3 to Fe3O4. ©1998 American Institute of Physics.
U2 - 10.1063/1.368109
DO - 10.1063/1.368109
M3 - Journal article
SN - 0021-8979
VL - 84
SP - 1101
EP - 1108
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 2
ER -