Strong Light-Matter Interaction in Monocrystalline Gold Nanodisks Coupled to Tungsten Disulfide - DTU Orbit (22/10/2019)

Strong Light-Matter Interaction in Monocrystalline Gold Nanodisks Coupled to Tungsten Disulfide

Spectroscopy on plasmonic nanodisks coupled to single and multilayer tungsten disulfide show a Rabi splitting of 108 meV and 180 meV, respectively, the highest splitting reported in transition metal dichalcogenides coupled to plasmonic nanostructures.

General information
Publication status: Published
Organisations: Center for Nanostructured Graphene, Structured Electromagnetic Materials, Department of Photonics Engineering, Department of Physics
Contributors: Stenger, N., Geisler, M., Wubs, M., Xiao, S., Mortensen, N. A.
Number of pages: 2
Publication date: 1 May 2019

Host publication information
Title of host publication: 2019 Conference on Lasers and Electro-Optics, CLEO 2019 - Proceedings
Publisher: IEEE
Article number: 8750416
ISBN (Electronic): 9781943580576
DOIs: 10.23919/CLEO.2019.8750416

Bibliographical note
From the session: Polaritonic Interactions in Transition Metal Dichalcogenide (FTu3C)
Source: Scopus
Source ID: 85069217025
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2019 › Research › peer-review