Strength variability of single flax fibres

Mustafa Aslan, G. Chinga-Carrasco, Bent F. Sørensen, Bo Madsen

    Research output: Contribution to journalJournal articleResearchpeer-review

    526 Downloads (Pure)


    Due to the typical large variability in the measured mechanical properties of flax fibres, they are often employed only in low grade composite applications. The present study aims to investigate the reasons for the variability in tensile properties of flax fibres. It is found that an inaccuracy in the determination of the cross-sectional area of the fibres is one major reason for the variability in properties. By applying a typical circular fibre area assumption, a considerable error is introduced into the calculated mechanical properties. Experimental data, together with a simple analytical model, are presented to show that the error is increased when the aspect ratio of the fibre cross-sectional shape is increased. A variability in properties due to the flax fibres themselves is found to originate from the distribution of defects along the fibres. Two distinctive types of stress–strain behaviours (linear and nonlinear) of the fibres are found to be correlated with the amount of defects. The linear stress–strain curves tend to show a higher tensile strength, a higher Young’s modulus, and a lower strain to failure than the nonlinear curves. Finally, the fibres are found to fracture by a complex microscale failure mechanism. Large fracture zones are governed by both surface and internal defects; and these cause cracks to propagate in the transverse and longitudinal directions.
    Original languageEnglish
    JournalJournal of Materials Science
    Issue number19
    Pages (from-to)6344-6354
    Publication statusPublished - 2011


    • Light strong materials for energy purposes


    Dive into the research topics of 'Strength variability of single flax fibres'. Together they form a unique fingerprint.

    Cite this