Strategy for efficient generation of numerous full-length cDNA clones of classical swine fever virus for haplotyping - DTU Orbit (04/10/2019)

Strategy for efficient generation of numerous full-length cDNA clones of classical swine fever virus for haplotyping

Background: Direct molecular cloning of full-length cDNAs derived from viral RNA is an approach to identify the individual viral genomes within a virus population. This enables characterization of distinct viral haplotypes present during infection.

Results: In this study, we recover individual genomes of classical swine fever virus (CSFV), present in a pig infected with vKos that was rescued from a cDNA clone corresponding to the highly virulent CSFV Koslov strain. Full-length cDNA amplicons (ca. 12.3 kb) were made by long RT-PCR, using RNA extracted from serum, and inserted directly into a cloning vector prior to detailed characterization of the individual viral genome sequences. The amplicons used for cloning were deep sequenced, which revealed low level sequence variation (<5%) scattered across the genome consistent with the clone-derived origin of vKos. Numerous full-length cDNA clones were generated using these amplicons and full-genome sequencing of individual cDNA clones revealed insights into the virus diversity and the haplotypes present during infection. Most cDNA clones were unique, containing several single-nucleotide polymorphisms, and phylogenetic reconstruction revealed a low degree of order. Conclusions: This optimized methodology enables highly efficient construction of full-length cDNA clones corresponding to individual viral genomes present within RNA virus populations.

General information

Publication status: Published
Organisations: National Veterinary Institute, Virology, Hvidovre Hospital
Corresponding author: Rasmussen, T. B.
Contributors: Johnston, C. M., Fahnæe, U., Belsham, G. J., Rasmussen, T. B.
Number of pages: 9
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: B M C Genomics
Volume: 19
Article number: 600
ISSN (Print): 1471-2164
Ratings:

BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 3.8 SJR 1.829 SNIP 1.074
Web of Science (2018): Indexed yes
Original language: English
Keywords: RNA, Genome, Bacterial artificial chromosome, RNA virus, Haplotyping, Pestivirus
Electronic versions:
s12864_018_4971_8.pdf
DOIs:
10.1186/s12864-018-4971-8

Bibliographical note

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Source: FindIt
Source ID: 2438275279
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review