Strategic games and truly playable effectivity functions

Valentin Goranko, Wojciech Jamroga, Paolo Turrini

Research output: Contribution to journalJournal articleResearchpeer-review


A well-known result in the logical analysis of cooperative games states that the so-called playable effectivity functions exactly correspond to strategic games. More precisely, this result states that for every playable effectivity function E there exists a strategic game that assigns to coalitions of players exactly the same power as E, and every strategic game generates a playable effectivity function. While the latter direction of the correspondence is correct, we show that the former does not hold for a number of infinite state games. We point out where the original proof of correspondence goes wrong, and we present examples of playable effectivity functions for which no equivalent strategic game exists. Then, we characterize the class of truly playable effectivity functions, that do correspond to strategic games. Moreover, we discuss a construction that transforms any playable effectivity function into a truly playable one while preserving the power of most (but not all) coalitions. We also show that Coalition Logic (CL), a formalism used to reason about effectivity functions, is not expressive enough to distinguish between playable and truly playable effectivity functions, and we extend it to a logic that can make that distinction while still enjoying the good meta-logical properties of CL, such as finite axiomatization and decidability via finite model property.
Original languageEnglish
JournalAutonomous Agents and Multi-Agent Systems
Issue number2
Pages (from-to)288-314
Publication statusPublished - 2013


  • Strategic games
  • Cooperative games
  • Correspondence
  • Coalition Logic


Dive into the research topics of 'Strategic games and truly playable effectivity functions'. Together they form a unique fingerprint.

Cite this