TY - JOUR
T1 - Strained silicon as a new electro-optic material
AU - Jacobsen, Rune Shim
AU - Andersen, Karin Nordström
AU - Borel, Peter Ingo
AU - Fage-Pedersen, Jacob
AU - Frandsen, Lars Hagedorn
AU - Hansen, Ole
AU - Kristensen, Martin
AU - Lavrinenko, Andrei
AU - Moulin, Gaid
AU - Ou, Haiyan
AU - Peucheret, Christophe
AU - Zsigri, Beata
AU - Bjarklev, Anders Overgaard
PY - 2006
Y1 - 2006
N2 - For decades, silicon has been the material of choice for mass fabrication of electronics. This is in contrast to photonics, where passive optical components in silicon have only recently been realized1, 2. The slow progress within silicon optoelectronics, where electronic and optical functionalities can be integrated into monolithic components based on the versatile silicon platform, is due to the limited active optical properties of silicon3. Recently, however, a continuous-wave Raman silicon laser was demonstrated4; if an effective modulator could also be realized in silicon, data processing and transmission could potentially be performed by all-silicon electronic and optical components. Here we have discovered that a significant linear electro-optic effect is induced in silicon by breaking the crystal symmetry. The symmetry is broken by depositing a straining layer on top of a silicon waveguide, and the induced nonlinear coefficient, (2) 15 pm V-1, makes it possible to realize a silicon electro-optic modulator. The strain-induced linear electro-optic effect may be used to remove a bottleneck5 in modern computers by replacing the electronic bus with a much faster optical alternative.
AB - For decades, silicon has been the material of choice for mass fabrication of electronics. This is in contrast to photonics, where passive optical components in silicon have only recently been realized1, 2. The slow progress within silicon optoelectronics, where electronic and optical functionalities can be integrated into monolithic components based on the versatile silicon platform, is due to the limited active optical properties of silicon3. Recently, however, a continuous-wave Raman silicon laser was demonstrated4; if an effective modulator could also be realized in silicon, data processing and transmission could potentially be performed by all-silicon electronic and optical components. Here we have discovered that a significant linear electro-optic effect is induced in silicon by breaking the crystal symmetry. The symmetry is broken by depositing a straining layer on top of a silicon waveguide, and the induced nonlinear coefficient, (2) 15 pm V-1, makes it possible to realize a silicon electro-optic modulator. The strain-induced linear electro-optic effect may be used to remove a bottleneck5 in modern computers by replacing the electronic bus with a much faster optical alternative.
U2 - 10.1038/nature04706
DO - 10.1038/nature04706
M3 - Journal article
SN - 0028-0836
VL - 441
SP - 199
EP - 202
JO - Nature
JF - Nature
ER -