Strained silicon as a new electro-optic material

Rune Shim Jacobsen, Karin Nordström Andersen, Peter Ingo Borel, Jacob Fage-Pedersen, Lars Hagedorn Frandsen, Ole Hansen, Martin Kristensen, Andrei Lavrinenko, Gaid Moulin, Haiyan Ou, Christophe Peucheret, Beata Zsigri, Anders Overgaard Bjarklev

Research output: Contribution to journalJournal articleResearchpeer-review


For decades, silicon has been the material of choice for mass fabrication of electronics. This is in contrast to photonics, where passive optical components in silicon have only recently been realized1, 2. The slow progress within silicon optoelectronics, where electronic and optical functionalities can be integrated into monolithic components based on the versatile silicon platform, is due to the limited active optical properties of silicon3. Recently, however, a continuous-wave Raman silicon laser was demonstrated4; if an effective modulator could also be realized in silicon, data processing and transmission could potentially be performed by all-silicon electronic and optical components. Here we have discovered that a significant linear electro-optic effect is induced in silicon by breaking the crystal symmetry. The symmetry is broken by depositing a straining layer on top of a silicon waveguide, and the induced nonlinear coefficient, (2) 15 pm V-1, makes it possible to realize a silicon electro-optic modulator. The strain-induced linear electro-optic effect may be used to remove a bottleneck5 in modern computers by replacing the electronic bus with a much faster optical alternative.
Original languageEnglish
Pages (from-to)199-202
Publication statusPublished - 2006

Fingerprint Dive into the research topics of 'Strained silicon as a new electro-optic material'. Together they form a unique fingerprint.

Cite this