TY - JOUR
T1 - Strain, stress and stress relaxation in oxidized ZrCuAl-based bulk metallic glass
AU - Haratian, Saber
AU - Nießen, Frank
AU - Grumsen, Flemming Bjerg
AU - Nancarrow, Mitchell J.B.
AU - Pereloma, Elena V.
AU - Villa, Matteo
AU - Christiansen, Thomas L.
AU - Somers, Marcel A. J.
PY - 2020
Y1 - 2020
N2 - Surface engineering of Zr 51.3 Al 8.5 Cu 31.3 Ni 4 Ti 4.9 bulk metallic glass (BMG) by gaseous oxidizing below the glass-transition temperature is investigated as a means to introduce compressive residual stress in the surface region. The ZrCuAl-based BMG was exposed to an extremely low oxygen partial pressure of 10−41 bar at 600 K for 60 h. The oxidizing treatment led to the formation of an internal oxidation zone, consisting of finely dispersed nano-crystalline cubic ZrO 2 (c-ZrO2 ), metallic regions inclined with the surface and Cu-hillocks at the surface. The stresses introduced by the volume expansion associated with oxidation were evaluated from i) the lattice strains within c-ZrO2 , as determined with an X-ray diffraction (XRD) based method, and ii) strain-relaxation as a response to annular focused ion beam (FIB) milling, as monitored with digital image correlation (DIC). XRD analysis yielded -1.5 GPa (compressive stress) in the nano-crystalline c-ZrO2 , while the strain relaxation monitored with FIB-DIC analysis indicated compressive residual stresses of −1.4 GPa in the internal oxidation zone. The strains and stresses determined with the independent measurement methods are discussed. The quantitative macro-strains are discussed in relation to the microstructural features and stress relaxation mechanisms during evolution of the internal oxidation zone.
AB - Surface engineering of Zr 51.3 Al 8.5 Cu 31.3 Ni 4 Ti 4.9 bulk metallic glass (BMG) by gaseous oxidizing below the glass-transition temperature is investigated as a means to introduce compressive residual stress in the surface region. The ZrCuAl-based BMG was exposed to an extremely low oxygen partial pressure of 10−41 bar at 600 K for 60 h. The oxidizing treatment led to the formation of an internal oxidation zone, consisting of finely dispersed nano-crystalline cubic ZrO 2 (c-ZrO2 ), metallic regions inclined with the surface and Cu-hillocks at the surface. The stresses introduced by the volume expansion associated with oxidation were evaluated from i) the lattice strains within c-ZrO2 , as determined with an X-ray diffraction (XRD) based method, and ii) strain-relaxation as a response to annular focused ion beam (FIB) milling, as monitored with digital image correlation (DIC). XRD analysis yielded -1.5 GPa (compressive stress) in the nano-crystalline c-ZrO2 , while the strain relaxation monitored with FIB-DIC analysis indicated compressive residual stresses of −1.4 GPa in the internal oxidation zone. The strains and stresses determined with the independent measurement methods are discussed. The quantitative macro-strains are discussed in relation to the microstructural features and stress relaxation mechanisms during evolution of the internal oxidation zone.
KW - ZrCuAl-based bulk metallic glass
KW - Gaseous Oxidizing
KW - Self-healing mechanism
KW - Residual stress
KW - X-ray diffraction sin 2 ψ method
KW - FIB-DIC method
U2 - 10.1016/j.actamat.2020.09.049
DO - 10.1016/j.actamat.2020.09.049
M3 - Journal article
SN - 1359-6454
VL - 200
SP - 674
EP - 685
JO - Acta Materialia
JF - Acta Materialia
ER -