TY - JOUR
T1 - Stochastic modeling of kHz quasi-periodic oscillation light curves
AU - Vio, R.
AU - Rebusco, P.
AU - Andreani, P.
AU - Madsen, Henrik
AU - Overgaard, Rune Viig
PY - 2006
Y1 - 2006
N2 - Kluzniak & Abramowicz explain the high frequency, double peak, "3:2" QPOs observed in neutron star and black hole sources in terms of a non-linear parametric resonance between radial and vertical epicyclic oscillations of an almost Keplerian accretion disk. The 3:2 ratio of epicyclic frequencies occurs only in strong gravity. Recently, a simple model incorporating their suggestion was studied analytically: the result is that a small forcing may indeed excite the parametric 3:2 resonance. However, no explanation has been provided on the nature of the forcing which is given an "ad hoc" deterministic form. In the present paper the same model is considered. The equation are numerically integrated, dropping the ad hoc forcing and adding instead a stochastic term to mimic the action of the very complex processes that occur in accretion disks as, for example, MRI turbulence. We demonstrate that the presence of the stochastic term is able to trigger the resonance in epicyclic oscillations of nearly Keplerian disks, and it influences their pattern
AB - Kluzniak & Abramowicz explain the high frequency, double peak, "3:2" QPOs observed in neutron star and black hole sources in terms of a non-linear parametric resonance between radial and vertical epicyclic oscillations of an almost Keplerian accretion disk. The 3:2 ratio of epicyclic frequencies occurs only in strong gravity. Recently, a simple model incorporating their suggestion was studied analytically: the result is that a small forcing may indeed excite the parametric 3:2 resonance. However, no explanation has been provided on the nature of the forcing which is given an "ad hoc" deterministic form. In the present paper the same model is considered. The equation are numerically integrated, dropping the ad hoc forcing and adding instead a stochastic term to mimic the action of the very complex processes that occur in accretion disks as, for example, MRI turbulence. We demonstrate that the presence of the stochastic term is able to trigger the resonance in epicyclic oscillations of nearly Keplerian disks, and it influences their pattern
M3 - Journal article
VL - 452
SP - 383
EP - 386
JO - Annual Review of Astronomy and Astrophysics
JF - Annual Review of Astronomy and Astrophysics
SN - 0066-4146
IS - 2
ER -