Steam oxidation of X20CrMoV121: Comparison of laboratory exposures and in situ exposure in power plants

Steam oxidation of X20CrMoV121 is a 12% Cr martensitic steel which has been used in power plants in Europe for many decades. Specimens have been removed from superheater tubes to investigate long-term exposure with respect to steam oxidation. These tubes have been exposed for various durations up to 135 000 h in power plants in Denmark at steam temperatures varying from 450–565 °C. This paper collates the data, compares oxide morphologies and assesses to what extent parabolic kinetics can be used to describe the oxidation rate. The steam oxidation behaviour has been investigated in the laboratory in an Ar-46%H2O mixture at 500, 600 and 700 °C for 336 h. It was observed that the morphology of the oxide layers was strongly influenced by temperature, and some of the same morphologies are also observed for power plant specimens. However, the temperatures at which they occur were different for plant and laboratory specimens, e.g. the presence of Cr rich bands within the oxide occurred at a lower temperature in the plant than in the laboratory. In addition there is a greater variety of oxide morphologies for long-term plant specimens compared to laboratory specimens.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Materials and Surface Engineering, Ørsted A/S, Vattenfall Vindkraft A/S
Contributors: Montgomery, M., Hansson, A. N., Vilhelmsen, T., Jensen, S. A.
Pages: 674-684
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Materials and Corrosion
Volume: 63
Issue number: 8
ISSN (Print): 0947-5117
Ratings:
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.25 SJR 0.669 SNIP 1.127
Web of Science (2012): Impact factor 1.208
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Original language: English
DOIs:
10.1002/maco.201106063
Source: dtu
Source ID: n:oai:DTIC-ART:wiley/367613826::18378
Research output: Contribution to journal › Journal article – Annual report year: 2012 › Research › peer-review