Static and dynamic mode instabilities in dual-core fiber amplifiers

This paper provides a detailed derivation of coupled-mode equations for thermo-optic nonlinear effects in dual-core fiber amplifiers. The equations predict both static and dynamic modal deformations depending on amplifier design. The prediction of static deformations is confirmed by nonlinear beam-propagation simulations. The dependencies of instabilities and their thresholds on launch conditions are analyzed by numerical simulations and analytical arguments. It is shown that the output stability properties are strongly dependent on the relative phase of the input in the two cores. The instability power threshold for dual-core amplifiers with strongly coupled cores are found to be lower than for a comparable single-core amplifier. However, as the core separation is increased, the dual-core amplifier threshold rapidly increases when light is amplified in the odd supermode.

General information
Publication status: Published
Organisations: Fiber Optics, Devices and Non-linear Effects, Department of Photonics Engineering, University of Parma
Corresponding author: Lægsgaard, J.
Contributors: Lægsgaard, J., Poli, F., Cucinotta, A., Selleri, S.
Pages: 757-767
Publication date: 1 Mar 2019
Peer-reviewed: Yes

Publication information
Journal: Journal of the Optical Society of America B: Optical Physics
Volume: 36
Issue number: 3
ISSN (Print): 0740-3224
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
Original language: English
DOIs: 10.1364/JOSAB.36.000757
Source: Scopus
Source ID: 85062471517
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review