Start-up performance of a woodchip bioreactor operated end-of-pipe at a commercial fish farm—A case study - DTU Orbit (10/11/2019)

Start-up performance of a woodchip bioreactor operated end-of-pipe at a commercial fish farm—A case study

There is a need for simple, maintenance-free technologies for removing nitrogen (N) from aquaculture effluents. Denitrifying woodchip bioreactors have been used successfully to remove nitrate-N (NO$_3$-N) from ground and surface waters and may potentially be applied to dilute aquaculture effluents as well. Real-life applicability in commercial, outdoor fish farms including practical start-up issues such as e.g. time till stable performance and potential leaching are, however, unknown to the industry. This case study consequently investigated the temporal performance of a woodchip bioreactor (12.5 m3) during start-up. The bioreactor was operated end-of-pipe at a commercial, outdoor rainbow trout (Oncorhynchus mykiss) farm in Denmark operated at low recirculation intensity. Applying an empty bed contact time (EBCT) of 5 h, the specific objectives of the study were to resolve: i) how fast the bioreactor would start to remove NO$_3$-N; ii) how fast steady state was achieved; iii) which NO$_3$-N removal rates could be attained at the relatively low effluent temperature (∼8 °C) and iv) to which extent any concomitant leaching of phosphorous (P), ammonia or organic matter would occur. In- and outlet grab samples were obtained every 6 h until the bioreactor was in steady state (2 weeks) followed by weekly 24 h pooled samples for another 3 weeks (5 weeks in total). Additional grab samples were obtained from 9 sampling ports within the bioreactor on 3 consecutive days during steady state. Samples were analyzed for dissolved nutrients (total N, nitrate, nitrite, ammonium, total phosphorous, ortho-phosphorous, BOD5 and COD). In addition, oxygen, temperature and pH were logged every 30 min while sampling and alkalinity were measured once a week. Removal of NO$_3$-N started immediately and remained stable at 7.06 ± 0.81 g NO$_3$-N/m3/d ($n = 6$) throughout the sampling period. Increased effluent NO$_2$-N concentrations (peaking at 1.14 mg NO$_2$-N/l after 4–5 days) were transiently observed during the initial 11 days. After that, the woodchip bioreactor was largely in steady state with respect to N-balances corroborated by a close match between filtered total-N (TN$_{diss}$) and NO$_3$-N removal rates. Measurements within the bed showed that the majority of the influent dissolved oxygen (DO) was consumed within the first part of the bioreactor and that NO$_3$-N removal thereafter proceeded gradually with distance within the bed. Leaching of non-structural, dissolved organic compounds were observed just after startup, causing a short-term (1 week) increase in effluent concentrations of COD, BOD5, P and ammonium. Additional measurements carried out until 147 days after start-up showed that the woodchip bioreactor continued to remove TN$_{diss}$ at an average removal rate of 7.81 ± 0.82 g N/m3/d, and that the initial leakage of P stopped altogether. In summary, the study demonstrated that woodchip bioreactors can effectively remove NO$_3$-N from dilute aquacultural effluents at low temperatures and commercial conditions and that stable performance is achieved within a few weeks.

General information
Publication status: Published
Organisations: National Institute of Aquatic Resources, Section for Aquaculture
Contributors: von Ahnen, M., Pedersen, P. B., Dalsgaard, A. J. T.
Pages: 96-104
Publication date: 2016
Peer-reviewed: Yes

Publication Information
Journal: Aquacultural Engineering
Volume: 74
ISSN (Print): 0144-8609
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.09 SJR 0.824 SNIP 1.525
Web of Science (2016): Impact factor 1.559
Web of Science (2016): Indexed yes
Keywords: Aquatic Science, Denitification, End-of-pipe treatment, Field study, Nitrogen, Alkalinity, Aquaculture, Bioreactors, Dissolution, Dissolved oxygen, Effluents, Fish, Leaching, Nitrates, Nitrogen oxides, Organic compounds, Phosphorus, Aquaculture effluents, Dissolved organic compounds, Effluent concentrations, Empty bed contact time, Field studies, Rainbow trouts (Oncorhynchus mykiss), Temporal performance, Bioconversion, Oncorhynchus mykiss
DOIs: 10.1016/j.aquaeng.2016.07.002
Source: FindIt
Source ID: 2306369502
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review