Stable and high-yielding intrinsic 59Fe-radiolabeling of the intravenous iron preparations Monofer and Cosmofer

Stable and high-yielding intrinsic 59Fe-radiolabeling of the intravenous iron preparations Monofer and Cosmofer: Intrinsic 59Fe-radiolabeling of Monofer and Cosmofer

Commercial iron supplements Monofer(R) and Cosmofer(R) were intrinsically radiolabeled with Fe-59 for the purpose of tracing iron absorption in vivo. Optimized procedures aimed at introducing Fe-59 into the macromolecular construct in a form that was as chemically equivalent to the matrix iron as possible. This was determined by challenging the labeled constructs with diethylenetriaminepentaacetic acid (DTPA) followed by separation by size-exclusion and measurements of radioactivity and iron in the eluted fractions. The final procedures were simple and involved heating aqueous dispersions of the supplements in the presence of [Fe-59]FeCl$_3$ for 24h at 95 degrees C for Monofer, and 85 degrees C for Cosmofer, resulting in radiochemical yields greater than 94%. High performance size exclusion chromatography, UV-VIS spectroscopy, and dynamic light scattering were used to show that the supplements remained unchanged after radiolabeling, underscoring the applicability of the methodology for radiolabeling commercial iron preparations.

General information
Publication status: Published
Organisations: Center for Nuclear Technologies, The Hevesy Laboratory, Pharmacosmos Cro A/S
Number of pages: 8
Pages: 375-382
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Labelled Compounds and Radiopharmaceuticals
Volume: 59
Issue number: 9
ISSN (Print): 0362-4803
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.65 SJR 0.603 SNIP 0.621
Web of Science (2016): Impact factor 1.745
Web of Science (2016): Indexed yes
Original language: English
Keywords: Intravenous iron therapy, Iron supplements, Monofer, Cosmofer, Fe-59, Intrinsic radiolabeling
DOIs:
10.1002/jlcr.3416
Source: FindIt
Source ID: 2305892185
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review