TY - JOUR
T1 - Stabilization of metastable tetragonal zirconia nanocrystallites by surface modification
AU - Nielsen, Mette Skovgaard
AU - Almdal, Kristoffer
AU - Lelieveld, A. van
PY - 2011
Y1 - 2011
N2 - Metastable tetragonal zirconia nanocrystallites were studied in humid air and in water at room temperature (RT). A stabilizing effect of different surfactants on the tetragonal phase was observed. Furthermore, the phase stability of silanized metastable tetragonal zirconia nanocrystallites was tested by prolonged boiling in water. The samples were analyzed with X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Changes in the monoclinic volume fraction in the samples were calculated. A number of surfactants were screened for their ability to stabilize the tetragonal phase upon exposure to humidity. Only silanes and phosphate esters of these were able to stabilize the tetragonal phase in water. Even as small amounts of silanes as 0.25 silane molecule per nm2 are able to stabilize the tetragonal phase in water at RT. Aminopropyl trimethoxy silane and γ-methacryloxypropyl trimethoxy silane were even capable of preventing phase transformation during boiling for 48 h in water.
AB - Metastable tetragonal zirconia nanocrystallites were studied in humid air and in water at room temperature (RT). A stabilizing effect of different surfactants on the tetragonal phase was observed. Furthermore, the phase stability of silanized metastable tetragonal zirconia nanocrystallites was tested by prolonged boiling in water. The samples were analyzed with X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Changes in the monoclinic volume fraction in the samples were calculated. A number of surfactants were screened for their ability to stabilize the tetragonal phase upon exposure to humidity. Only silanes and phosphate esters of these were able to stabilize the tetragonal phase in water. Even as small amounts of silanes as 0.25 silane molecule per nm2 are able to stabilize the tetragonal phase in water at RT. Aminopropyl trimethoxy silane and γ-methacryloxypropyl trimethoxy silane were even capable of preventing phase transformation during boiling for 48 h in water.
U2 - 10.1007/s10853-010-5007-1
DO - 10.1007/s10853-010-5007-1
M3 - Journal article
SN - 0022-2461
VL - 46
SP - 1824
EP - 1829
JO - Journal of Materials Science
JF - Journal of Materials Science
IS - 6
ER -