Stability Oriented Design of Model Predictive Control for DC/DC Boost Converter

Yuan Li*, Subham Sahoo, Tomislav Dragicevic, Yichao Zhang, Frede Blaabjerg

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

66 Downloads (Pure)


Model predictive control (MPC) based on long prediction horizons can address the inherent non-minimum phase (NMP) behavior issue of DC/DC boost converters. However, the response time of the controller will increase since the long prediction horizons result in a high computational burden. To solve this problem, a non-minimum phase behavior improving (NPI) MPC with a single prediction horizon is proposed in this paper. Firstly, the actual cause behind the NMP behavior is analyzed. Afterward, the difference equation is modified according to the analysis and then used in the NPI-MPC. In addition, a fixed switching frequency is generated based on the value of the duty cycle, which is realized in the NPI-MPC algorithm and a modulation. Moreover, a weighting factors-design guideline based on the stability criterion of a Jacobian matrix is provided. It effectively reflects the impact and sensitivity of different weighting factors on stability. Finally, we conclude this paper by validating the proposed NPI-MPC method and the weighting factors-design guidelines with the results obtained under experimental conditions.
Original languageEnglish
JournalIEEE Transactions on Industrial Electronics
Issue number1
Pages (from-to)922-932
Number of pages10
Publication statusPublished - 2024


  • Boost converter
  • Fixed switching frequency
  • Model predictive control (MPC)
  • Nonminimum phase (NMP) behavior
  • Weighting factors


Dive into the research topics of 'Stability Oriented Design of Model Predictive Control for DC/DC Boost Converter'. Together they form a unique fingerprint.

Cite this