Spatially Resolved Water Emission from Gravitationally Lensed Dusty Star-forming Galaxies at $z \sim 3$ - DTU Orbit (29/10/2019)

Spatially Resolved Water Emission from Gravitationally Lensed Dusty Star-forming Galaxies at $z \sim 3$

Water (H_2O), one of the most ubiquitous molecules in the universe, has bright millimeter-wave emission lines that are easily observed at high redshift with the current generation of instruments. The low-excitation transition of H_2O, ($\nu_{\text{rest}} = 987.927$ GHz), is known to trace the far-infrared (FIR) radiation field independent of the presence of active galactic nuclei (AGNs) over many orders of magnitude in FIR luminosity (L_{FIR}). This indicates that this transition arises mainly due to star formation. In this paper, we present spatially (~0.5 corresponding to ~1 kiloparsec) and spectrally resolved (~100 km s^{-1}) observations of in a sample of four strong gravitationally lensed high-redshift galaxies with the Atacama Large Millimeter/submillimeter Array. In addition to increasing the sample of luminous ($>10^{12} L_\odot$) galaxies observed with H_2O, this paper examines the relation on resolved scales for the first time at high redshift. We find that is correlated with on both global and resolved kiloparsec scales within the galaxy in starbursts and AGN with average . We find that the scatter in the observed relation does not obviously correlate with the effective temperature of the dust spectral energy distribution or the molecular gas surface density. This is a first step in developing as a resolved star formation rate calibrator.

General information
Publication status: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, University of Illinois, University of Texas at Austin, Universidad Diego Portales, Aix-Marseille University, European Southern Observatory, Saint Mary's University Halifax, University of Florida, Flatiron Institute, Stanford University, University of Arizona, Leiden University, Max Planck Institute for Radio Astronomy
Corresponding author: Jarugula, S.
Number of pages: 13
Publication date: 2019
Peer-reviewed: Yes

Publication information
Volume: 880
Issue number: 2
Article number: 92
ISSN (Print): 0067-0049
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
Original language: English
Keywords: Galaxies: high-redshift, Galaxies: ISM, Galaxies: starburst, ISM: molecules
DOIs: 10.3847/1538-4357/ab290d. Embargo ends: 30/07/2020
Source: FindIt
Source ID: 2449294232
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review