TY - JOUR
T1 - Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches
AU - Heenen, Hendrik H.
AU - Gauthier, Joseph A.
AU - Kristoffersen, Henrik H.
AU - Ludwig, Thomas
AU - Chan, Karen
PY - 2020
Y1 - 2020
N2 - Rationalizing the influence of the solvent on electrochemical reaction energetics is a central challenge in our understanding of electrochemical interfaces. To date, it is unclear how well existing methods predict solvation energies at solid/liquid interfaces since they cannot be assessed experimentally. Ab initio molecular dynamics (AIMD) simulations present a physically highly accurate, but also a very costly approach. In this work, we employ extensive AIMD simulations to benchmark solvation at charge-neutral metal/water interfaces against commonly applied continuum solvent models. We consider a variety of adsorbates including *CO, *CHO, *COH, *OCCHO, and *OH on Cu, Au, and Pt facets solvated by water. The surfaces and adsorbates considered are relevant, among other reactions, to electrochemical CO2 reduction and the oxygen redox reactions. We determine directional hydrogen bonds and steric water competition to be critical for a correct description of solvation at the metal/water interfaces. As a consequence, we find that the most frequently applied continuum sol- vation methods, which do not yet capture these properties, do not presently provide more accurate energetics over simulations in vacuum. We find most of the computed benchmark solvation energies to linearly scale with hydrogen bonding or competitive water adsorption, which strongly differs across surfaces. Thus, we determine solvation energies of adsorbates to be non-transferable between metal surfaces in contrast to standard practice.
AB - Rationalizing the influence of the solvent on electrochemical reaction energetics is a central challenge in our understanding of electrochemical interfaces. To date, it is unclear how well existing methods predict solvation energies at solid/liquid interfaces since they cannot be assessed experimentally. Ab initio molecular dynamics (AIMD) simulations present a physically highly accurate, but also a very costly approach. In this work, we employ extensive AIMD simulations to benchmark solvation at charge-neutral metal/water interfaces against commonly applied continuum solvent models. We consider a variety of adsorbates including *CO, *CHO, *COH, *OCCHO, and *OH on Cu, Au, and Pt facets solvated by water. The surfaces and adsorbates considered are relevant, among other reactions, to electrochemical CO2 reduction and the oxygen redox reactions. We determine directional hydrogen bonds and steric water competition to be critical for a correct description of solvation at the metal/water interfaces. As a consequence, we find that the most frequently applied continuum sol- vation methods, which do not yet capture these properties, do not presently provide more accurate energetics over simulations in vacuum. We find most of the computed benchmark solvation energies to linearly scale with hydrogen bonding or competitive water adsorption, which strongly differs across surfaces. Thus, we determine solvation energies of adsorbates to be non-transferable between metal surfaces in contrast to standard practice.
U2 - 10.1063/1.5144912
DO - 10.1063/1.5144912
M3 - Journal article
C2 - 32295363
SN - 0021-9606
VL - 152
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 14
M1 - 144703
ER -