Abstract
Spambot detection in online social networks is a long-lasting challenge
involving the study and design of detection techniques capable of efficiently
identifying ever-evolving spammers. Recently, a new wave of social spambots has
emerged, with advanced human-like characteristics that allow them to go
undetected even by current state-of-the-art algorithms. In this paper, we show
that efficient spambots detection can be achieved via an in-depth analysis of
their collective behaviors exploiting the digital DNA technique for modeling
the behaviors of social network users. Inspired by its biological counterpart,
in the digital DNA representation the behavioral lifetime of a digital account
is encoded in a sequence of characters. Then, we define a similarity measure
for such digital DNA sequences. We build upon digital DNA and the similarity
between groups of users to characterize both genuine accounts and spambots.
Leveraging such characterization, we design the Social Fingerprinting
technique, which is able to discriminate among spambots and genuine accounts in
both a supervised and an unsupervised fashion. We finally evaluate the
effectiveness of Social Fingerprinting and we compare it with three
state-of-the-art detection algorithms. Among the peculiarities of our approach
is the possibility to apply off-the-shelf DNA analysis techniques to study
online users behaviors and to efficiently rely on a limited number of
lightweight account characteristics.
Original language | English |
---|---|
Journal | IEEE Transactions on Dependable and Secure Computing |
Volume | 15 |
Issue number | 4 |
Pages (from-to) | 561-576 |
ISSN | 1545-5971 |
DOIs | |
Publication status | Published - 2018 |
Keywords
- Spambot detection
- Social bots
- Online social networks
- Behavioral modeling
- Digital DNA