TY - JOUR
T1 - Small-angle scattering study of mesoscopic structures in charged gel and their evolution on dehydration
AU - Sugiyama, Masaaki
AU - Annaka, Masahiko
AU - Hara, Kazuhiro
AU - Vigild, Martin Etchells
AU - Wignall, George D.
PY - 2003
Y1 - 2003
N2 - Mesoscopic structures, with length scales similar to10(2) Angstrom, were investigated by small-angle X-ray and neutron scattering (SAXS and SANS) in several N-isopropylacrylamide-sodium acrylate (NIPA-SA) copolymeric hydrogels with varying [NIPA]/[SA] ratios and water contents. The SAXS experiments reveal that, depending upon the [NIPA]/[SA] ratio, the dehydrated NIPA-SA gel shows two mesoscopic structures: one consists of randomly distributed SA-rich islands in NIPA matrix, while the other is a microphase-separated structure, composed of NIPA-rich and SA-rich domains. In addition, the SANS experiments reveal the mesoscopic structural features during the dehydration process. As the concentration of the network polymers increases, NIPA-rich and water-rich domains segregate in the gel. Then, an electrostatic interaction between the segregated domains induces a microphase-separated structure in the limit of the dehydrated NIPA-SA gel.
AB - Mesoscopic structures, with length scales similar to10(2) Angstrom, were investigated by small-angle X-ray and neutron scattering (SAXS and SANS) in several N-isopropylacrylamide-sodium acrylate (NIPA-SA) copolymeric hydrogels with varying [NIPA]/[SA] ratios and water contents. The SAXS experiments reveal that, depending upon the [NIPA]/[SA] ratio, the dehydrated NIPA-SA gel shows two mesoscopic structures: one consists of randomly distributed SA-rich islands in NIPA matrix, while the other is a microphase-separated structure, composed of NIPA-rich and SA-rich domains. In addition, the SANS experiments reveal the mesoscopic structural features during the dehydration process. As the concentration of the network polymers increases, NIPA-rich and water-rich domains segregate in the gel. Then, an electrostatic interaction between the segregated domains induces a microphase-separated structure in the limit of the dehydrated NIPA-SA gel.
U2 - 10.1021/jp0277816
DO - 10.1021/jp0277816
M3 - Journal article
SN - 1520-6106
VL - 107
SP - 6300
EP - 6308
JO - Journal of Physical Chemistry Part B: Condensed Matter, Materials, Surfaces, Interfaces & Biophysical
JF - Journal of Physical Chemistry Part B: Condensed Matter, Materials, Surfaces, Interfaces & Biophysical
IS - 26
ER -