Small and Robust All-Polymer Fiber Bragg Grating based pH Sensor - DTU Orbit
(05/09/2019)

Small and Robust All-Polymer Fiber Bragg Grating based pH Sensor

The smallest all-polymer optical fiber Bragg grating based transducer element for pH sensing is presented. We show that, considering its size and robustness, it out-performs similar state-of-the-art fiber Bragg grating based pH sensors regarding both sensitivity and response time. A 5 μm - 10 μm thick pH sensitive hydrogel coating is placed on a PMMA based microstructured Polymer Optical Fiber Bragg Grating (mPOFBG). The hydrogel expands or contracts depending on the pH and thus changes in pH are monitored by following the fiber strain induced changes in the reflected Bragg wavelength λ_B. Prior to applying the hydrogel coating the mPOF is etched from 150 μm to 80 μm to enhance sensitivity and surface crazing is introduced with a 50/50 vol% solution of acetone and methanol to enhance spreading of the hydrogel during the application and adhesion after cure. With this design we achieved a sensitivity of $\Delta \lambda_B = 73 \pm 2 \text{ pm/pH}$ and response times below 4.5 mins. for pH 5 - 7 and 4 - 7 respectively and a thermal cross sensitivity of 31.4 pm/°C ± 0.4 pm/°C.

General information
Publication status: Accepted/In press
Organisations: Department of Photonics Engineering, Fiber Sensors & Supercontinuum, OFS Fitel Denmark ApS
Contributors: Janting, J., Pedersen, J., Woyessa, G., Nielsen, K., Bang, O.
Number of pages: 7
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Journal of Lightwave Technology
Volume: PP
Issue number: 99
ISSN (Print): 0733-8724
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
Original language: English
Keywords: Fiber optics, Fiber Bragg gratings, Etching, Chemical sensors, Optical polymers, Polymer gels, pH measurement
DOI:s: 10.1109/JLT.2019.2902638
Source: FindIt
Source ID: 2444273307
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review