TY - JOUR
T1 - Sixth International Symposium on Bifurcations and Instabilities in Fluid Dynamics (BIFD2015)
T2 - Foreword
AU - Bar-Yoseph, P. Z.
AU - Brøns, Morten
AU - Gelfgat, A.
AU - Oron, A.
AU - Tuckerman, L. S.
AU - Wesfreid, J. E.
PY - 2016
Y1 - 2016
N2 - Hydrodynamic stability is of fundamental importance in fluid dynamics. As a well-established subject of scientific investigation, it continues to attract great interest in the fluid mechanics community. Bifurcations and instabilities are observed in all areas of fundamental and applied fluid dynamics and remain a challenge for experimental, theoretical and computational studies. Examples of prototypical hydrodynamic instabilities are the Rayleigh–Bénard, Taylor–Couette, Bénard–Marangoni, Rayleigh–Taylor, and Kelvin–Helmholtz instabilities. A fundamental understanding of bifurcation patterns requires the identification of mechanisms responsible for the instability. From an applied point of view, such knowledge is also necessary in order to design reliable and efficient industrial processes, such as melting, mixing, crystal growth, coating, and welding. Modeling of instability mechanisms in biological and biomedical devices is currently a very active and rapidly developing area of research with important biotechnological and medical applications, such as biofilm engineering and wound healing. The understanding of symmetry-breaking in hemodynamics could have important consequences for vascular diseases, such as atherosclerotic and vulnerable plaques, abdominal aortic aneurisms, carotid artery disease, and pulmonary embolisms and implications for vascular interventions such as grafting and stenting. The collection of papers in this issue is a selection of the presentations given at the Sixth International Symposium on Instability and Bifurcations in Fluid Dynamics (BIFD) held at the ESPCI, Paris, 15–17 July2015. With four invited and nearly 400 contributed talks, the symposium gave an overview of the state of the art of the field including experimental, theoretical, and computational approaches to convection, effects of magnetic fields, wake flows, rotating flows, and manyother problems. The complete program can be found at the conference website http://bifd2015.sciencesconf.org/.
AB - Hydrodynamic stability is of fundamental importance in fluid dynamics. As a well-established subject of scientific investigation, it continues to attract great interest in the fluid mechanics community. Bifurcations and instabilities are observed in all areas of fundamental and applied fluid dynamics and remain a challenge for experimental, theoretical and computational studies. Examples of prototypical hydrodynamic instabilities are the Rayleigh–Bénard, Taylor–Couette, Bénard–Marangoni, Rayleigh–Taylor, and Kelvin–Helmholtz instabilities. A fundamental understanding of bifurcation patterns requires the identification of mechanisms responsible for the instability. From an applied point of view, such knowledge is also necessary in order to design reliable and efficient industrial processes, such as melting, mixing, crystal growth, coating, and welding. Modeling of instability mechanisms in biological and biomedical devices is currently a very active and rapidly developing area of research with important biotechnological and medical applications, such as biofilm engineering and wound healing. The understanding of symmetry-breaking in hemodynamics could have important consequences for vascular diseases, such as atherosclerotic and vulnerable plaques, abdominal aortic aneurisms, carotid artery disease, and pulmonary embolisms and implications for vascular interventions such as grafting and stenting. The collection of papers in this issue is a selection of the presentations given at the Sixth International Symposium on Instability and Bifurcations in Fluid Dynamics (BIFD) held at the ESPCI, Paris, 15–17 July2015. With four invited and nearly 400 contributed talks, the symposium gave an overview of the state of the art of the field including experimental, theoretical, and computational approaches to convection, effects of magnetic fields, wake flows, rotating flows, and manyother problems. The complete program can be found at the conference website http://bifd2015.sciencesconf.org/.
U2 - 10.1088/0169-5983/48/6/061001
DO - 10.1088/0169-5983/48/6/061001
M3 - Editorial
SN - 0169-5983
VL - 48
JO - Fluid Dynamics Research
JF - Fluid Dynamics Research
IS - 6
M1 - 061001
ER -