Sintering and grain growth kinetics in La$_{0.85}$Sr$_{0.15}$MnO$_3$–Ce$_{0.9}$Gd$_{0.1}$O$_{1.95}$ (LSM–CGO) porous composite - DTU Orbit (28/07/2019)

Sintering and grain growth kinetics in La$_{0.85}$Sr$_{0.15}$MnO$_3$–Ce$_{0.9}$Gd$_{0.1}$O$_{1.95}$ (LSM–CGO) porous composite was studied by applying a two-stage master sintering curve (MSC) approach and comparing with LSM and CGO single-phase materials. In the two-stage MSC, sintering mechanisms occurring at different stages were separated with respect of density, giving a typical apparent activation energy values for each sintering stage of the LSM–CGO system. Compared with the single-phase materials, retardant effect of the different phases on mass diffusion leads to much higher apparent activation energy for densification of the composite. Similarly, constrain effect was also observed in grain growth in the composite. Particularly, in the investigated temperature range (1100–1250°C), the determined grain boundary mobility of CGO in the LSM–CGO composite ($10^{-16} - 10^{-16}$ m2N$^{-1}$s$^{-1}$) is comparable with the single-phase CGO, while the grain boundary mobility of LSM in the composite ($10^{-17} - 10^{-16}$ m2N$^{-1}$s$^{-1}$) is around 1 order of magnitude smaller than the single-phase LSM.

General information
Publication status: Published
Organisations: Department of Energy Conversion and Storage, Mixed Conductors, Ceramic Engineering & Science
Contributors: Ni, D. W., Andersen, K. B., Esposito, V.
Number of pages: 10
Pages: 3769-3778
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Journal of the European Ceramic Society
Volume: 34
Issue number: 15
ISSN (Print): 0955-2219
Ratings:
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.16 SJR 1.163 SNIP 2.079
Web of Science (2014): Impact factor 2.947
Web of Science (2014): Indexed yes
Original language: English
Keywords: Sintering, Densification, Grain growth, Ce$_{0.9}$Gd$_{0.1}$O$_{1.95}$, La$_{0.85}$Sr$_{0.15}$MnO$_3$
DOIs: 10.1016/j.jeurceramsoc.2014.04.044
Source: FindIt
Source-ID: 267792932
Research output: Contribution to journal › Journal article – Annual report year: 2014 › Research › peer-review