Single-source chip-based frequency comb enabling extreme parallel data transmission -
DTU Orbit (16/08/2019)

Single-source chip-based frequency comb enabling extreme parallel data transmission

The internet today transmits hundreds of terabits per second, consumes 9% of all electricity worldwide and grows by 20-
30% per year(1,2). To support capacity demand, massively parallel communication links are installed, not scaling
favourably concerning energy consumption. A single frequency comb source may substitute many parallel lasers and
improve system energy-efficiency(3,4). We present a frequency comb realized by a non-resonant aluminium-gallium-
arsenide-on-insulator (AlGaAsOI) nanowaveguide with 66% pump-to-comb conversion efficiency, which is significantly
higher than state-of-the-art resonant comb sources. This enables unprecedented high data-rate transmission for chip-
based sources, demonstrated using a single-mode 30-core fibre. We show that our frequency comb can carry 661 Tbit s(-
1) of data, equivalent to more than the total internet traffic today. The comb is obtained by seeding the AlGaAsOI chip with
10-GHz picosecond pulses at a low pump power (85 mW), and this scheme is robust to temperature changes, is energy
efficient and facilitates future integration with on-chip lasers or amplifiers(5,6).

General information
Publication status: Published
Organisations: Department of Photonics Engineering, High-Speed Optical Communication, Centre of Excellence for
Silicon Photonics for Optical Communications, Nanophotonic Devices, Fujikura Ltd., Technical University of Denmark
Contributors: Hu, H., Da Ros, F., Pu, M., Ye, F., Ingerslev, K., Porto da Silva, E., Nooruzzaman, M., Amma, Y., Sasaki, Y.
, Mizuno, T., Miyamoto, Y., Ottaviano, L., Semenova, E., Guan, P., Zibar, D., Gallil, M., Yvind, K., Morioka, T., Oxenløwe,
L. K.
Pages: 469-74
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Nature Photonics
Volume: 12
Issue number: 8
ISSN (Print): 1749-4885
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 20.77 SJR 13.456 SNIP 8.489
Web of Science (2018): Impact factor 31.583
Web of Science (2018): Indexed yes
Original language: English
Electronic versions:
NPHOT_manuscript_comb_for_extreme_parallel_data_accepted_version_with_fi...pdf
DOIs:
10.1038/s41566-018-0205-5
Source: FindIt
Source-ID: 2436299638
Research output: Contribution to journal Journal article – Annual report year: 2018 Research peer-review