A single-pot enzymatic reaction sequence has been designed for the synthesis of a key intermediate metabolite called D-glyceraldehyde-3-phosphate (D-GAP). The reaction sequence consists of three enzymes and uses D-F16BP as a starting material (Fig.). The rabbit muscle aldolase (RAMA)-catalyzed reaction step is in favor of D-F16BP formation with an equilibrium constant of 10^{-4}M [1]. Therefore, the single-pot reaction sequence has been designed to shift the equilibrium and regenerate NADH. The capability of the reaction sequence was demonstrated by the enhanced equilibrium conversion from 1.4% to 96%. The reaction system was optimized in detail with regard to activity and stability of the enzymes and stability of the cofactors (NADH and NAD$^+$) and D-GAP. Reaction kinetics models for each of the enzymes were formulated. The effect of co-substances on the activity of the enzymes was evaluated. The results elucidated that D-F16BP and sn-G3P do not influence the activity of FDH and HCOO$^-$ does not affect the activity of RAMA, whereas D-F16BP and HCOO$^-$ suppress the activity of sn-G3PDH. From the kinetics perspective and due to the stability of the enzymes, a continuous operation based on an enzyme membrane reactor was preferred.

General information

Publication status: Published
Organisations: Technische Universität Hamburg-Harburg
Contributors: Shibabaw Molla, G., J. Venkatesh, P., Liese, A.
Pages: 1401–1426
Publication date: 2014
Peer-reviewed: Yes

Publication information

Journal: Chemie-Ingenieur-Technik
Volume: 86
Issue number: 9
ISSN (Print): 0009-286X
Ratings:
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.77 SJR 0.331 SNIP 0.545
Web of Science (2014): Impact factor 0.658
Web of Science (2014): Indexed yes
Original language: English
DOIs:
10.1002/cite.201450599
Source: PublicationPreSubmission
Source-ID: 127080040

Research output: Contribution to journal › Conference abstract in journal – Annual report year: 2014 › Research › peer-review