Single-pulse terahertz coherent control of spin resonance in the canted antiferromagnet YFeO3, mediated by dielectric anisotropy

Zuanming Jin, Zoltán Mics, Guohong Ma, Zhenxiang Cheng, Mischa Bonn, Dmitry Turchinovich

Research output: Contribution to journalJournal articleResearchpeer-review

313 Downloads (Pure)

Abstract

We report on the coherent control of terahertz (THz) spin waves in a canted antiferromagnet yttrium orthoferrite, YFeO3, associated with a quasiferromagnetic (quasi-FM) spin resonance at a frequency of 0.3 THz, using a single-incident THz pulse. The spin resonance is excited impulsively by the magnetic field component of the THz pulse. The intrinsic dielectric anisotropy of YFeO3 in the THz range allows for coherent control of both the amplitude and the phase of the excited spin wave. The coherent control is based on simultaneous generation of two interfering phase-shifted spin waves whose amplitudes and relative phase, dictated by the dielectric anisotropy of the YFeO3 crystal, can be controlled by varying the polarization of the incident THz pulse with respect to the crystal axes. The spatially anisotropic decay of the THz-excited FM spin resonance in YFeO3, leading to an increasingly linear polarization of the THz oscillation at the spin resonance frequency, suggests a key role of magnon–phonon coupling in spin-wave energy dissipation.
Original languageEnglish
JournalPhysical Review B Condensed Matter
Volume87
Issue number9
Pages (from-to)094422
Number of pages5
ISSN0163-1829
DOIs
Publication statusPublished - 2013

Cite this