Abstract
In this work, we show the potential of single-particle inductively coupled plasma-mass spectrometry (spICP-MS) as a screening technique for detection of inorganic nanoparticles (NPs) that are expected to be present in food. We demonstrate that the spICP-MS/MS method in combination with collision/reaction cell gases and microsecond dwell times offers sensitive and interference-free detection of NPs. We present the steps that have to be considered to correctly assess the presence of NPs in food, for example, setting a suitable threshold for discriminating particle events from the baseline and analyzing a sufficient number of blank samples to minimize false-positive results. We applied the proposed screening approach to the sequential detection of NPs containing 8 selected elements that could be potentially present in 13 different food products. The highest mass concentrations of NPs (in the mg/g range) were found in the samples with food additives which are known to contain a fraction of NPs. The presence of (nano)particles in some of the investigated food samples was also confirmed by scanning electron microscopy analysis. Moreover, for the example of Al-containing NPs in Chinese noodles, we demonstrate that identification of the source of NPs with an unknown composition can be challenging when using only spICP-MS as particle mass concentration and size distribution can only be estimated by assuming a certain particle composition/shape. Other complementary techniques for particle characterization, such as electron microscopy in combination with elemental analysis, are therefore required.
Original language | English |
---|---|
Journal | Journal of Agricultural and Food Chemistry |
Volume | 69 |
Issue number | 34 |
Pages (from-to) | 9979-9990 |
ISSN | 0021-8561 |
DOIs | |
Publication status | Published - 2021 |
Keywords
- Screening
- Food samples
- Inorganic nanoparticles
- Single-particle ICP−MS
- Scanning electron microscopy