There is evidence that optically stimulated luminescence (OSL) dating of quartz using the single-aliquot regenerative-dose (SAR) protocol underestimates the equivalent dose \((D_e) \) for paleodoses above 100–200 Gy. Additionally, ‘infinitely’ old samples found not to be in laboratory saturation were reported. We present single and multi-grain SAR-OSL investigations for a coarse-grained (180–250 \(\mu \text{m} \)) quartz sample extracted from loess collected below the Brunhes/Matuyama transition at the Roksolany site (Ukraine). The sample was dated to more than 1000 ka by electron spin resonance using a multi center approach (Al and Ti signals), confirming that the \(D_e \) (\(\sim 2000 \) Gy) falls beyond the limit of standard OSL \(D_e \) measurement techniques. However, the natural signal measured using multi-grain aliquots of quartz was found to be below the laboratory saturation level. A comparison was made between synthetic dose response curves (DRCs) generated from single-grain and multigrain aliquot data, respectively; the natural signal was found to be closer to the laboratory saturation level (92%) in the case of the single-grain synthetic DRC than for the multi-grain synthetic DRC where the signal was 86% of the saturation level. This difference could not be attributed to stimulation with different wavelengths, i.e. blue and green light stimulation for multi and single-grain measurements, respectively. By analysing synthetic data obtained by grouping grains according to their brightness, it was observed that brighter grains give a natural signal closer to the laboratory saturation level. This trend was confirmed for multi-grain aliquot data. Based on these findings we infer that variability in the contribution from populations of grains with different levels of brightness may represent a controlling factor in the closeness of the natural signal to laboratory saturation level for infinitely old samples.

General information
Publication status: Published
Organisations: Center for Nuclear Technologies, Radiation Physics, Babes-Bolyai University
Corresponding author: Anechitei-Deacu, V.
Contributors: Anechitei-Deacu, V., Timar-Gabor, A., Thomsen, K., Buylaert, J., Jain, M., Bailey, M., Murray, A.
Pages: 124-130
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Radiation Measurements
Volume: 120
ISSN (Print): 1350-4487
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 1.55 SJR 0.599 SNIP 1.099
Web of Science (2018): Impact factor 1.435
Web of Science (2018): Indexed yes
Original language: English
Keywords: Multi-grain aliquots, Optically stimulated luminescence (OSL), Quartz dose response, Saturation, Single grains, ‘Infinitely’ old
Electronic versions:
1_s2_0_S1350448717308296_main.pdf
DOIs:
10.1016/j.radmeas.2018.06.008
Source: FindIt
Source ID: 2435211350
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review