Simultaneous measurement of temperature and humidity with microstructured polymer optical fiber Bragg gratings

Simultaneous measurement of temperature and humidity with microstructured polymer optical fiber Bragg gratings

A microstructured polymer optical fiber (mPOF) Bragg grating sensor system for the simultaneous measurement of temperature and relative humidity (RH) has been developed and characterized. The sensing head is based on two in-line fiber Bragg gratings recorded in a mPOF. The sensor system has a root mean square deviation of 1.04 % RH and 0.8 °C in the range 10 to 90% RH and 20 to 80 °C. The proposed sensor system is easy to fabricate, cheap and compact.

General information
Publication status: Published
Organisations: Department of Photonics Engineering, Fiber Sensors & Supercontinuum, Department of Chemical and Biochemical Engineering, CHEC Research Centre, The Hempel Foundation Coatings Science and Technology Centre (CoaST), Department of Mechanical Engineering, Manufacturing Engineering
Contributors: Woyessa, G., Pedersen, J. K. M., Fasano, A., Nielsen, K., Markos, C., Rasmussen, H. K., Bang, O.
Number of pages: 4
Publication date: 2017

Host publication information
Title of host publication: 25th International Conference on Optical Fiber Sensors
Volume: 10323
Publisher: SPIE - International Society for Optical Engineering
Editors: Chung, Y., Jin, W., Lee, B., Canning, J., Nakamura, K., Yuan, L.
Article number: 103234T
Keywords: Polymer waveguides, Fiber Bragg gratings, Fiber optics sensors, Humidity, Temperature
Electronic versions:
103234T.pdf
DOIs:
10.1117/12.2265884
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2017 › Research › peer-review