Simulation of dual carbon–bromine stable isotope fractionation during 1,2-dibromoethane degradation

Biao Jin*, Ivonne Nijenhuis, Massimo Rolle

*Corresponding author for this work

    Research output: Contribution to journalJournal articleResearchpeer-review

    218 Downloads (Pure)

    Abstract

    We performed a model-based investigation to simultaneously predict the evolution of concentration, as well as stable carbon and bromine isotope fractionation during 1,2-dibromoethane (EDB, ethylene dibromide) transformation in a closed system. The modelling approach considers bond-cleavage mechanisms during different reactions and allows evaluating dual carbon–bromine isotopic signals for chemical and biotic reactions, including aerobic and anaerobic biological transformation, dibromoelimination by Zn(0) and alkaline hydrolysis. The proposed model allowed us to accurately simulate the evolution of concentrations and isotope data observed in a previous laboratory study and to successfully identify different reaction pathways. Furthermore, we illustrated the model capabilities in degradation scenarios involving complex reaction systems. Specifically, we examined (i) the case of sequential multistep transformation of EDB and the isotopic evolution of the parent compound, the intermediate and the reaction product and (ii) the case of parallel competing abiotic pathways of EDB transformation in alkaline solution.
    Original languageEnglish
    JournalIsotopes in Environmental and Health Studies
    Volume54
    Issue number4
    Pages (from-to)418-434
    ISSN1025-6016
    DOIs
    Publication statusPublished - 2018

    Keywords

    • Bromine-81
    • Carbon-13
    • Ethylene dibromide
    • Isotope effects
    • Mathematical modelling
    • Pollutant
    • Reaction mechanism

    Fingerprint

    Dive into the research topics of 'Simulation of dual carbon–bromine stable isotope fractionation during 1,2-dibromoethane degradation'. Together they form a unique fingerprint.

    Cite this