Simulation of an HTS Synchronous Superconducting Generator

Victor Manuel Rodriguez Zermeno (Author), Asger Bech Abrahamsen (Author), Nenad Mijatovic (Author), Mads Peter Sørensen (Author), Bogi Bech Jensen (Author), Niels Falsig Pedersen (Author)

Research output: Non-textual formSound/Visual production (digital)Research

161 Downloads (Pure)

Abstract

In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, etc. Unlike regular conductors, superconductors, experience high losses when exposed to AC fields. Thus, calculation of such losses is relevant for machine design to avoid quenches and increase performance. Superconducting coated conductors are well known to exhibit nonlinear resistivity, thus making the computation of heating losses a cumbersome task. Furthermore, the high aspect ratio of the superconducting materials involved adds a penalty in the time required to perform simulations. The chosen strategy for simulation is as follows: A mechanical torque signal together with an electric load is used to drive the finite element model of a synchronous generator where the current distribution in the rotor windings is assumed uniform. Then, a second finite element model for the superconducting material is linked to calculate the actual current distribution in the windings of the rotor. Finally, heating losses are computed as a response to both the driving mechanical input and the electric load change. The model is used to evaluate the effect of including a damper cage as a protection in the event of a short circuit in the stator coils.
Original languageEnglish
Publication date2011
Publication statusPublished - 2011
EventEuropean Conference on Applied Superconductivity - Hauge, Netherlands
Duration: 18 Sep 201123 Sep 2011

Conference

ConferenceEuropean Conference on Applied Superconductivity
CountryNetherlands
CityHauge
Period18/09/201123/09/2011

Cite this

@misc{a889c1ffaa1c461db4483695ba11d71d,
title = "Simulation of an HTS Synchronous Superconducting Generator",
abstract = "In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, etc. Unlike regular conductors, superconductors, experience high losses when exposed to AC fields. Thus, calculation of such losses is relevant for machine design to avoid quenches and increase performance. Superconducting coated conductors are well known to exhibit nonlinear resistivity, thus making the computation of heating losses a cumbersome task. Furthermore, the high aspect ratio of the superconducting materials involved adds a penalty in the time required to perform simulations. The chosen strategy for simulation is as follows: A mechanical torque signal together with an electric load is used to drive the finite element model of a synchronous generator where the current distribution in the rotor windings is assumed uniform. Then, a second finite element model for the superconducting material is linked to calculate the actual current distribution in the windings of the rotor. Finally, heating losses are computed as a response to both the driving mechanical input and the electric load change. The model is used to evaluate the effect of including a damper cage as a protection in the event of a short circuit in the stator coils.",
author = "{Rodriguez Zermeno}, {Victor Manuel} and Abrahamsen, {Asger Bech} and Nenad Mijatovic and S{\o}rensen, {Mads Peter} and Jensen, {Bogi Bech} and Pedersen, {Niels Falsig}",
year = "2011",
language = "English",

}

Simulation of an HTS Synchronous Superconducting Generator. Rodriguez Zermeno, Victor Manuel (Author); Abrahamsen, Asger Bech (Author); Mijatovic, Nenad (Author); Sørensen, Mads Peter (Author); Jensen, Bogi Bech (Author); Pedersen, Niels Falsig (Author). 2011. Event: European Conference on Applied Superconductivity, Hauge, Netherlands.

Research output: Non-textual formSound/Visual production (digital)Research

TY - ADVS

T1 - Simulation of an HTS Synchronous Superconducting Generator

A2 - Rodriguez Zermeno, Victor Manuel

A2 - Abrahamsen, Asger Bech

A2 - Mijatovic, Nenad

A2 - Sørensen, Mads Peter

A2 - Jensen, Bogi Bech

A2 - Pedersen, Niels Falsig

PY - 2011

Y1 - 2011

N2 - In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, etc. Unlike regular conductors, superconductors, experience high losses when exposed to AC fields. Thus, calculation of such losses is relevant for machine design to avoid quenches and increase performance. Superconducting coated conductors are well known to exhibit nonlinear resistivity, thus making the computation of heating losses a cumbersome task. Furthermore, the high aspect ratio of the superconducting materials involved adds a penalty in the time required to perform simulations. The chosen strategy for simulation is as follows: A mechanical torque signal together with an electric load is used to drive the finite element model of a synchronous generator where the current distribution in the rotor windings is assumed uniform. Then, a second finite element model for the superconducting material is linked to calculate the actual current distribution in the windings of the rotor. Finally, heating losses are computed as a response to both the driving mechanical input and the electric load change. The model is used to evaluate the effect of including a damper cage as a protection in the event of a short circuit in the stator coils.

AB - In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, etc. Unlike regular conductors, superconductors, experience high losses when exposed to AC fields. Thus, calculation of such losses is relevant for machine design to avoid quenches and increase performance. Superconducting coated conductors are well known to exhibit nonlinear resistivity, thus making the computation of heating losses a cumbersome task. Furthermore, the high aspect ratio of the superconducting materials involved adds a penalty in the time required to perform simulations. The chosen strategy for simulation is as follows: A mechanical torque signal together with an electric load is used to drive the finite element model of a synchronous generator where the current distribution in the rotor windings is assumed uniform. Then, a second finite element model for the superconducting material is linked to calculate the actual current distribution in the windings of the rotor. Finally, heating losses are computed as a response to both the driving mechanical input and the electric load change. The model is used to evaluate the effect of including a damper cage as a protection in the event of a short circuit in the stator coils.

M3 - Sound/Visual production (digital)

ER -